Polynomial approximation of Bernstein type
HTML articles powered by AMS MathViewer
- by Gilbert Strang
- Trans. Amer. Math. Soc. 105 (1962), 525-535
- DOI: https://doi.org/10.1090/S0002-9947-1962-0141921-8
- PDF | Request permission
References
- Arne Beurling and Henry Helson, Fourier-Stieltjes transforms with bounded powers, Math. Scand. 1 (1953), 120–126. MR 58009, DOI 10.7146/math.scand.a-10371 A. Erdélyi, Higher transcendental functions, Bateman Manuscript Project, Vol. 2, McGraw-Hill, New York, 1953. K. de Leeuw, On the degree of approximation of Bernstein polynomials, Technical Note No. 4, Applied Mathematics and Statistics Laboratory, Stanford Univ., Stanford, Calif., 1959.
- Rudolph E. Langer, On the asymptotic solutions of ordinary differential equations, with an application to the Bessel functions of large order, Trans. Amer. Math. Soc. 33 (1931), no. 1, 23–64. MR 1501574, DOI 10.1090/S0002-9947-1931-1501574-0
- G. G. Lorentz, Bernstein polynomials, Mathematical Expositions, No. 8, University of Toronto Press, Toronto, 1953. MR 0057370
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- I. J. Schoenberg, Some analytical aspects of the problem of smoothing, Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, Interscience Publishers, Inc., New York, 1948, pp. 351–370. MR 0023309 W. G. Strang, Trigonometric polynomials and difference method of maximum accuracy, J. Math. and Phys. 41 (1962), 147-154.
Bibliographic Information
- © Copyright 1962 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 105 (1962), 525-535
- MSC: Primary 41.15
- DOI: https://doi.org/10.1090/S0002-9947-1962-0141921-8
- MathSciNet review: 0141921