The asymptotic distribution of the number of zero-free intervals of a stable process
HTML articles powered by AMS MathViewer
- by R. K. Getoor
- Trans. Amer. Math. Soc. 106 (1963), 127-138
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145596-4
- PDF | Request permission
References
- R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech. 10 (1961), 493–516. MR 0123362
- R. M. Blumenthal and R. K. Getoor, The dimension of the set of zeros and the graph of a symmetric stable process, Illinois J. Math. 6 (1962), 308–316. MR 138134, DOI 10.1215/ijm/1255632328
- Kiyosi Itô, On stochastic processes. I. (Infinitely divisible laws of probability), Jpn. J. Math. 18 (1942), 261–301. MR 14629, DOI 10.4099/jjm1924.18.0_{2}61 M. G. Kendall and A. Stuart, The advanced theory of statistics, Vol. I, Hafner, Princeton, N.J., 1958.
- Harry Kesten, Positivity intervals of stable processes, J. Math. Mech. 12 (1963), 391–410. MR 0148096
- Michel Loève, Probability theory, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-New York-London, 1960. 2nd ed. MR 0123342
- Harry Pollard, The completely monotonic character of the Mittag-Leffler function $E_a(-x)$, Bull. Amer. Math. Soc. 54 (1948), 1115–1116. MR 27375, DOI 10.1090/S0002-9904-1948-09132-7
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 106 (1963), 127-138
- MSC: Primary 60.60
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145596-4
- MathSciNet review: 0145596