Some Hilbert spaces of analytic functions. I
HTML articles powered by AMS MathViewer
- by Louis de Branges
- Trans. Amer. Math. Soc. 106 (1963), 445-468
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145335-7
- PDF | Request permission
References
- N. Aronszajn and K. T. Smith, Invariant subspaces of completely continuous operators, Ann. of Math. (2) 60 (1954), 345–350. MR 65807, DOI 10.2307/1969637
- Arne Beurling, On two problems concerning linear transformations in Hilbert space, Acta Math. 81 (1948), 239–255. MR 27954, DOI 10.1007/BF02395019
- Louis de Branges, Some Hilbert spaces of entire functions, Trans. Amer. Math. Soc. 96 (1960), 259–295. MR 133455, DOI 10.1090/S0002-9947-1960-0133455-X
- Louis de Branges, Some Hilbert spaces of entire functions. II, Trans. Amer. Math. Soc. 99 (1961), 118–152. MR 133456, DOI 10.1090/S0002-9947-1961-0133456-2
- Louis de Branges, Some Hilbert spaces of entire functions. III, Trans. Amer. Math. Soc. 100 (1961), 73–115. MR 133457, DOI 10.1090/S0002-9947-1961-0133457-4
- Louis de Branges, Some Hilbert spaces of entire functions. IV, Trans. Amer. Math. Soc. 105 (1962), 43–83. MR 143016, DOI 10.1090/S0002-9947-1962-0143016-6
- M. S. Brodskiĭ, Unicellularity criteria for Volterra operators, Dokl. Akad. Nauk SSSR 138 (1961), 512–514 (Russian). MR 0131161
- M. S. Brodskiĭ, A multiplicative representation of certain analytic operator-functions. , Dokl. Akad. Nauk SSSR 138 (1961), 751–754 (Russian). MR 0131178
- M. S. Brodskiĭ and M. S. Livšic, Spectral analysis of non-self-adjoint operators and intermediate systems, Uspehi Mat. Nauk (N.S.) 13 (1958), no. 1(79), 3–85 (Russian). MR 0100793
- I. C. Gohberg and M. G. Kreĭn, Completely continuous operators with a spectrum concentrated at zero. , Dokl. Akad. Nauk SSSR 128 (1959), 227–230 (Russian). MR 0131168
- M. S. Livšic, On spectral decomposition of linear nonself-adjoint operators, Mat. Sbornik N.S. 34(76) (1954), 145–199 (Russian). MR 0062955
- James Rovnyak, Ideals of square summable power series, Proc. Amer. Math. Soc. 13 (1962), 360–365. MR 139015, DOI 10.1090/S0002-9939-1962-0139015-6
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 106 (1963), 445-468
- MSC: Primary 46.30
- DOI: https://doi.org/10.1090/S0002-9947-1963-0145335-7
- MathSciNet review: 0145335