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1. Introduction. Theorem A, the principal theorem of this paper can be inter-

preted as a result on the zeros of Faber polynomials or as a result on the theory of

Tchebycheff quadrature.

1.1. The proof of Theorem A is achieved by means of two auxiliary theorems.

In §2 Theorem B is stated and it is shown that it implies Theorem A. In §3 Theorem

C is stated and proved. In §4 it is shown that Theorem C implies Theorem B,

thus completing the proof of Theorem A. In §5 Theorem A is related to a paper

on the zeros of Faber polynomials by the author [1], and a paper on Tchebycheff

quadrature by Wilf [2].

1.2. A unit mass distribution on (— oo, oo), possessing moments of all positive

integer order will be said to belong to class D. If \¡i, i¡/j, \¡i* are in class D, we will

denote the /cth moments by mk, m¿, mk, respectively.

Theorem A.    There is an element i/f* of class D which has the properties:

(a) the equations

(1.2.1) m* = i ZxL,,       fe-1, -,n,
n j = 1

have a real solution for infinitely many positive integers n,

(b) the mass set of \¡i* does not lie on a finite interval.

An element of D which satisfies (a) and (b) will be called a Tx distribution.

The set of integers for which (1.2.1) has real solutions will be called the T set

of \¡>*.

2. The first auxiliary theorem.

2.1.    Let ij/j be an element of class D. The equations

(2.1.1) m¿ = -  Z xl„,       k=\,-,n,
«   i=n

have a unique solution tyn,---,tnn, up to a permutation of the first subscripts.

Let
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(2.1.2) FJtztyj) = J! (z - U =    I a\zn-\
¡=i ¡=o

where a¿ = 1. We adopt the convention that if i¡/ without a subscript is used,

then the coefficients of the third term of (2.1.2) are written as a¡. The quantity

a{ is a polynomial with real coefficients in the quantities m{, —,m/,   i = 1, —,n.

2.2. Let \¡/, \¡/y he two elements of class D. Let

(2.2.1) I ip - tfr, II. = max{|mt- mj|,-,|m„-m¿|}.

The defined quantity is called the nth order distance between the two mass dis-

tributions.

2.3. A unit mass distribution with n equal masses located at n distinct real

points will be called a simple mass distribution of degree n. If the mass points

of a simple mass distribution, say \¡i, are Sy,---,s„, then

(2.3.1) Fniz\ifr)= fl(z-Si).
¡ = i

2.4. Lemma A. Let ij/ be a simple mass distribution of degree n, and let

\¡iy be any element of class D. There is a number e, £ > 0, called a proximity

number of \¡/, such that if

(2.4.1) || * - i¡,y I < s,

then the polynomial F^zl^) has real zeros.

Proof. Let Sy, —,s„ be the mass points of i¡/. Let at he the circle \z — s¡\ = Su

i = 1, —, n. The 5i are chosen to be positive, and such that s, is the only point of

the set Sy, —,s„ inside or on o¡. Let £ = {J"=yO¡, and let

(2.4.2) min |F„(z|^)| = <5.
zeE

The quantity 5 is positive. By Rouché's theorem, we know that if

(2.4.3) \Fniz\ty)-Fniz\t)\<ô

for z on £, then F„iz | {¡ty) has one root inside each of the circles <r¡. By §2.1, the

coefficients of F„iz | \¡iy) are real, so these roots must be real.

The left side of (2.4.3) is less than

(2.4.4) ?l\a}-at\,

for zeE, where
¡=o

(2.4.5) y = max {1, |z|, - j ̂  |"-1} > 0.

The quantity (2.4.4) is a continuous function of m1, i = 1, —,n, and takes on the

value zero when m,1 = mt, i = 1, —, n. Hence there is a number e > 0, such that
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if (2.4.1) is satisfied, (2.4.4) is less than o", and therefore (2.4.3) is satisfied. This

completes the proof.

2.5. Theorem B. There is an element \¡i* of class D, and a denumerable

sequence of simple mass distributions \j/k of degree rk and proximity numbers

sk, k = 1,2,.", where rx < r2 < •■• such that

/•CO

(2.5.1) di//* > 0,  for all a>0,

and

(2.5.2) |**-*t|rft<<t.       k = \,2,-.

2.6. Theorem B implies Theorem A. We will show that if a function i/¿* exists

satisfying (2.5.1) and (2.5.2), then the same function satisfies conditions (a) and

(b) of Theorem A. It is clear that (2.5.1) implies (b). Also (2.5.2) implies that

(1.2.1) has real solutions for n = rk, k = 1,2, ••■ because by Lemma A the zeros

of Frk(z \\J/*) are real, and by (2.1.2) they form a solution to (1.2.1) for n = rk.

3. The second auxiliary theorem.

3.1. The proof of Theorem C is based on a construction. In §5 methods for

generalizing the construction to arrive at a wider class of Tx distributions is

discussed.

We first define a family of sets O which will remain fixed throughout §3 and

§4. The family O consists of a denumerable number of nonoverlapping intervals

on the positive real axis, say {0¡}, j = 1,2, •••, having centers at Uj, j = 1,2, •••

such that 0 < ux < u2 < ■••, and u„ tends to infinity.

3.2. Theorem C. Let the family of sets O be given. There exists a denumer-

able sequence of simple mass distributions, i¡/k, fc=l,2, ••-, having degree

rk,rx <r2< ■••, and proximity numbers ek such that

f #t = y,. > 0,        / = l,-,fc-l,    fc = 2,3,.-.,
JOj

(3.2.1)

and

(3.2.2) \^k-^k-tU-t<min {J£_,... £jl-j ,   k = 2,3,-.

3.3. An element \¡i of D is said to be (M, k) compatible if \¡/ is a simple mass

distribution, if the mass points of i¡/ lie in the sets Ox, ■,Ok, and if there is a

positive mass on Ok, all of which is located at uk. The operation M(k, «), where

« is an integer and automatically greater than one, can be applied to a (M, k)

compatible mass distribution, and yields a unique mass distribution we denote by

(3.3.1) i¡/x = i¡/M(k,n).

The distribution ij/x is characterized by the following properties:

(3.3.2) iPx(E) = iKE)
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for all sets to the left of Ok,

(3.3.3) *t(«*)-<K«*) iç^r)'

and

(3-3.4) Uuk+i) =   t&±

3.4. Lemma B. Let e be an arbitrary positive number, p an arbitrary

integer, and let *¡/ be (M,k) compatible. There exists an integer ny such that

(3.4.1) || tfr, - xj, ||p < £

where

(3.4.2) \j/x = \¡)M(k,n)

and n ^ nx.

Proof. By considering the explicit expressions for mr,ml, for any positive

integer r, we find that

(3.4.3) mri_mp = ^K+1_„D.

This tends to zero as n tends to infinity, so that the proof of the lemma is readily

completed.

3.5. An element \¡i of D is said to be (S, k) compatible if all the mass is located

at a finite number of points, say masses b,,b, >0,i = 1, —, q at the points vx, —,

vq, v, < v, + x, i = 1, —, q — 1, if all the mass lies on the sets Ox, -,0^ if there

is one mass point on Ok, namely the point uk, and if the equations

(3.5.1) b, = a,bq,       f-1,— ,q-l,

are satisfied by integer values for a,. The operation S(k, S), S a positive number,

can be applied to an (S, k) compatible mass distribution, and will yield a unique

mass distribution we denote by

(3.5.2) \lix = \pS(k,S).

The distribution \j/x is defined as follows. The mass point v„ 1 ^ i í£ q — 1 is

replaced by a, mass points of mass bq, say at viX,---,vitX., according to some

fixed law which satisfies the condition

(3.5.3) \v,-v,j\^S,      j = l,~,a,.

We can say for definiteness that

(3.5.4) vu = v, + ±-S,      j = \,-,a,.
*1
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The mass bq and the mass point vq remains unaffected.

3.6. Lemma C. Let e be an arbitrary positive number, p an arbitrary

positive integer, and let \¡i be (S, k) compatible. There exists a number öy > 0

such that

(3.6.1) ¡i^-^IIp < e,

where

(3.6.2) ib y = ij/Sik,ô)

and ö _ öy.

Proof.   Using the notations of §3.5 we find that

«-i  /      "i \
(3.6.3) m)-mr=   £   \bq   £ tftJ - b¡v'  ,

¡=i   \     j=i /

where r is an arbitrary positive integer.

Because of (3.5.3), as Ö tends to zero, vtJ tends to v¡. Using (3.5.1) we then see

that (3.6.3) tends to zero, so the proof of the lemma is readily completed.

3.7. An element \¡i of D followed by a finite sequence of operations of the

type being considered is said to be well defined when the following conditions

are satisfied. \¡j must have the type of compatibility required to perform the

first operation, and after any number of operations have been performed, the

resulting mass distribution must have the proper compatibility condition for the

next operation, when it exists.

We note that if \¡i is (M,/c) compatible, then i^M(fc,n) is (S,/c + 1) compatible,

so that

(3.7.1) \¡/Mik,n)Sik + l,o)

is well defined.

Lemma D. Let \¡/ be (M,fe) compatible and of degree r. Let e be an arbitrary

positive number. Let \¡iy = ij/Mik, n), and \¡i2 = \¡/ySik + 1,5). There exist num-

bers öy > 0 and ny^2 such that for any ö z% öy, and any integer n^nt

(3.7.2) \j/2 is (M, k+ 1) compatible

and

(3.7.3) || tfr2 - tfr ||r < 8.

Proof. Consider the set consisting of the mass points of i¡/y and the end points

of Oy,--,Ok. Let <52 be the smallest distance between any pair of these points.

If ö < ö2, then

(3.7.4) tiiOj) = il/yiOj),      j = \,-,k,
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and

(3.7.5) ^("fc+i) = ^i("t+i).

This means that all the mass of \¡i2 is on the sets Ox, •••,Ok+x. Further checking

shows that it is simple and that all of its mass on Ok+x is concentrated at uk+x

and is positive. Therefore >/¿2 is (M, k + 1) compatible.

We next make use of the inequality

(3.7.6) || «A2 - V |, Ú  Ui- ii 1, + || «h - «Ai |„

which indeed holds true for any three elements of D. By Lemma B, we can chose

nx so that the first term on the right is less than e/2 for n }± nx. By Lemma C

we can choose <53 so that the second term on the right is less than e/2 for ô < ô3.

Then Lemma D is true for ôx = min(¿2,¿3), and the above choice of nx.

3.8. We note the following properties that hold when n^nx,ô ^ôx:

(3.8.1) ^(0;)  =   <Jf(Oj), j=l,-,k-l,

(3.8.2) iP2(Ok) = «K«*) - In,

and

(3.8.3) <ls2(Uk+i) = —-
p«

The mass distribution \¡/2 is simple and of degree p«.

3.9. Lemma E. Let i//x be the unit mass located at ux. There exist integers

nun2, ■■■,ni 2: 2, and positive numbers ô1,ô2, ■•• such that: (a)

(3.9.1) iltxM(l,nx)S(2,ox)-M(k-l,nk_x)S(k,ok_x)

is a well-defined sequence for k^.2,  (b) the mass distribution \j/k defined by

(3.9.1) is (M,k) compatible, and (c)

(3.9.2) I i¡,k - *,_, k_, = min j^r, -, ^- j,

for k ^ 2, w«ere ey- is i«e proximity number of i/^- a«¿¿ r¿ is i/ie degree of

\¡/j, j = i,-,k- 1.

Proof.   We divide the proof into two cases.

Case I. k = 2. Let ex be a proximity number of i/^. We have observed that

(3.9.1) is well defined for this case in §3.7. By Lemma D, «*, <5* exist such that \j/2 is

(M,2) compatible and such that (3.9.2) is satisfied for p = 2, providing

nx ^ «*, öx ^ ö*. Choose nx = n* and 5X — 3*.

Case II. The inductive step. Assume that the numbers nx, ■•■,np_x,öx, •••,¿5p_1

exist such that (3.9.1) is well defined for k = 2, •■•,p, such that \¡/p is (M,p) com-
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patible and such that (3.9.2) is satisfied for k = 2, — ,p. These assumptions imply

that \pp is simple. Let it have proximity number sp and degree rp. The proximity

numbers Sy, • • •, ep_ y used in (3.9.4) will be those introduced successively in previous

steps. Since \¡ip is iM,p) compatible, by Lemma D there are numbers n*,ö*

such that

(3.9.3) r = ^pMip,n)Sip+i,ö)

is iM,p+ 1) compatible, and

(3-9-4) ||^*-^||r^min {£,..., ^}

for n = n*,ö z% Ö*. Let n„ = n*,öp = Ö*, and let \¡ip+l be the function defined

by (3.9.3) by these values. Then for the values n1,—,np,&1, —,c>p (a), (b) and (c)

are satisfied for k = 2, —,p + 1. This completes the proof by induction.

3.10. We list properties of the functions \jjk of this lemma:

(3.10.1) rk = »!,— ,nt_l5   /c^2.

(3.10.2) ^(0.) = ^-^J-,   ¿ = l,-,fe-l,   fee2.
ni '" nj

These follow from the fact that \jjy has degree 1, and the properties stated

in §3.8 by induction.

3.11. To complete the proof of Theorem C, we use the mass distribution

Lemma E, noting that (3.10.1) implies that rt < r2 < —, that (3.10.2) implies

(3.2.1), and that (3.9.2) corresponds to (3.2.2).

4. Proof of Theorem B.

4.1. Lemma F. Let \¡i¡ be a convergent sequence of unit mass distribution

on [0, co) which satisfies

(4.1.1) m\ â Mk,

where Mk is a constant independent of i. The limit distribution \j/ will be of

class D and

(4.1.2) lim m\ = mk.
£->oo

Proof. We first show that for any e > 0 there is a positive number A such

that

(4.1.3) í xkdi¡/i ̂  s

for any R, S which satisfy A < R < S. This follows from the inequality
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(4.1.4)

Hence

(4.1.5)

J r A JR A

xkd\jj < e for A < R < S,
J R

and therefore \j/ has moments of all orders. We next show that for any e>0 there

is an i, such that

POO /» 00

x*d<A, -      xkdip
Jo J 0

< £

!#  ^

(4.1.6)

for i > iy. Choose A so that

/•OO /«GO

(4.1.7) I   xkdi/,,S-,    J   x

The left side of (4.1.6) is less than

•  pA r*A /» oo /» oo

(4.1.8) **#, -       x*d^    4-       x*d^ 4- jc*#.
I Jo                    Jo                      J^                      J.1

There is an ils such that for ¡' > ix, the first term is less than e/3 and the proof

of (4.1.6) is complete. In particular, the case k = 0 shows that \j/ is a unit mass

distribution, and since it has moments of all orders it is of class D.

4.2. Proof of Theorem B. We now consider the sequence of mass distri-

butions i//k of Theorem C. By (3.2.2), and (3.7.6) applied to arbitrary elements

of D, and the inequality \\tpy -</'2||r^¡i/'i —iA2|r+i, where r is an arbitrary integer

and ipy, ij/2 are arbitrary elements of D, we find that

**+P-lMrk S! y + - + ;(4.2.1)

In particular, this means that

(4.2.2) m*+p ^ "m* + £*>       « á rk, p £ 1,

so that

(4.2.3) m\ ^ max{mi,-,m*_1, m* 4- £*}.

The right-hand side is a constant independent of i, and there is an inequality for

every value of q since rk tends to infinity. Let \pk. be a convergent subsequence

of the ipk,which exists by Helly's theorem, and let ifr* be the limit. Because of

Lemma F we have

(4.2.4) I </>*-<A*||rt<£*.

We now show that i//* satisfies the conditions of Theorem B. Indeed, (4.2.4)

the same as (2.5.2), iji*(0¡) = y, > 0 by (3.10.2), and since by §3.1, Uj tends to

infinity, (2.5.1) is satisfied. Thus the proof of the theorem is complete.
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5. Discussion of results.

5.1. Faber polynomials. The polynomials F„(z|i/^) are the Faber polynomials

of the series on the right-hand side of

(5.1.1) zexp (-£^j=z + a0 + ^+ -,

which is obtained from the expression on the left-hand side by formal expansion.

That is, they are the polynomial part of the formal nth power of the right-hand

side of (5.1.1). In [1] a general theorem is given for the location of the zeros of

Faber polynomials in the case

(5.1.2) limsup|a„|1/n<oo.

If t// is a Ty distribution this condition is not satisfied, so that Theorem A can be

interpreted as a result on the zeros of Faber polynomials for the case

(5.1.3) limsup|a„|1/B = oo.

This example may suggest the proper formulation of a general theorem for zeros

of Faber polynomials for the case (5.1.3).

5.2. Tchebycheff quadrature. Wilf in [2] raised the question whether Ty

distributions exist, which we have answered affirmatively. He has shown that if

a Ty distribution exists, then there must be large gaps in its T set. The question

arises whether a gap condition can be devised which will discriminate between

sequences of integers which are T sets of a Ty distribution, and those sequences

which are not.

5.3. The construction of §3 yields a Ty distribution. There are several places

where the construction can be generalized. The family of sets O can be on the

entire real axis, the u¡ need not be ordered, and we need only that lim sup | u¡ | = co.

The operation Mik,n) can be generalized. It takes mass from Ok to Ok+1.

Actually, quantities of mass can be taken from Oy, ■■■,Ok to Ok+1, ■■■,Ok+p, but

with a parameter which admits a convergence property similar to Lemma B.

Likewise the operation S(fc,<5) can be generalized by modifying (3.5.4).

The carrying out of some such generalization would be justified if it could

be shown that all Ty distributions could be obtained by the new construction.
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