Simple algebras and derivations
HTML articles powered by AMS MathViewer
- by Klaus Hoechsmann
- Trans. Amer. Math. Soc. 108 (1963), 1-12
- DOI: https://doi.org/10.1090/S0002-9947-1963-0152548-7
- PDF | Request permission
References
- S. A. Amitsur, Derivations in simple rings, Proc. London Math. Soc. (3) 7 (1957), 87–112. MR 88480, DOI 10.1112/plms/s3-7.1.87
- G. Hochschild, Simple algebras with purely inseparable splitting fields of exponent $1$, Trans. Amer. Math. Soc. 79 (1955), 477–489. MR 70961, DOI 10.1090/S0002-9947-1955-0070961-9
- G. Hochschild, Restricted Lie algebras and simple associative algebras of characteristic $p$, Trans. Amer. Math. Soc. 80 (1955), 135–147. MR 72428, DOI 10.1090/S0002-9947-1955-0072428-0
- Nathan Jacobson, Abstract derivation and Lie algebras, Trans. Amer. Math. Soc. 42 (1937), no. 2, 206–224. MR 1501922, DOI 10.1090/S0002-9947-1937-1501922-7
- Nathan Jacobson, $p$-algebras of exponent $p$, Bull. Amer. Math. Soc. 43 (1937), no. 10, 667–670. MR 1563614, DOI 10.1090/S0002-9904-1937-06621-3 O. Teichmüller, Verschränkte Produkte mit Normalringen, Deutsch. Math. 1 (1936), 92-102. —, p-Algebren, Deutsch. Math. 1 (1936), 362-388.
- Oystein Ore, On a special class of polynomials, Trans. Amer. Math. Soc. 35 (1933), no. 3, 559–584. MR 1501703, DOI 10.1090/S0002-9947-1933-1501703-0
- Oystein Ore, Theory of non-commutative polynomials, Ann. of Math. (2) 34 (1933), no. 3, 480–508. MR 1503119, DOI 10.2307/1968173
- Hans Zassenhaus, The representations of Lie algebras of prime characteristic, Proc. Glasgow Math. Assoc. 2 (1954), 1–36. MR 63359
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 108 (1963), 1-12
- MSC: Primary 16.60; Secondary 17.30
- DOI: https://doi.org/10.1090/S0002-9947-1963-0152548-7
- MathSciNet review: 0152548