Separation of the $n$-sphere by an $(n-1)$-sphere
HTML articles powered by AMS MathViewer
- by James C. Cantrell
- Trans. Amer. Math. Soc. 108 (1963), 185-194
- DOI: https://doi.org/10.1090/S0002-9947-1963-0155308-6
- PDF | Request permission
References
- J. J. Andrews and M. L. Curtis, Knotted 2-spheres in the 4-sphere, Ann. of Math. (2) 70 (1959), 565β571. MR 107239, DOI 10.2307/1970330 E. Artin, Zur Istopie zweidimensionaler FlΓ€chen im ${R_4}$, Abh. Math. Sem. Univ. Hamburg 4 (1925), 174-177.
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408
- R. H. Bing, A set is a $3$ cell if its cartesian product with an arc is a $4$ cell, Proc. Amer. Math. Soc. 12 (1961), 13β19. MR 123303, DOI 10.1090/S0002-9939-1961-0123303-2
- Marston Morse, A reduction of the Schoenflies extension problem, Bull. Amer. Math. Soc. 66 (1960), 113β115. MR 117694, DOI 10.1090/S0002-9904-1960-10420-X
- J. C. Cantrell and C. H. Edwards Jr., Almost locally polyhedral curves in Euclidean $n$-space, Trans. Amer. Math. Soc. 107 (1963), 451β457. MR 149453, DOI 10.1090/S0002-9947-1963-0149453-9
- V. K. A. M. Gugenheim, Piecewise linear isotopy and embedding of elements and spheres. I, II, Proc. London Math. Soc. (3) 3 (1953), 29β53, 129β152. MR 58204, DOI 10.1112/plms/s3-3.1.29
- Barry Mazur, On embeddings of spheres, Bull. Amer. Math. Soc. 65 (1959), 59β65. MR 117693, DOI 10.1090/S0002-9904-1959-10274-3
- E. C. Zeeman, Unknotting spheres in five dimensions, Bull. Amer. Math. Soc. 66 (1960), 198. MR 117737, DOI 10.1090/S0002-9904-1960-10431-4
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 108 (1963), 185-194
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1963-0155308-6
- MathSciNet review: 0155308