Noncommuting random products
HTML articles powered by AMS MathViewer
- by Harry Furstenberg
- Trans. Amer. Math. Soc. 108 (1963), 377-428
- DOI: https://doi.org/10.1090/S0002-9947-1963-0163345-0
- PDF | Request permission
References
- S. Banach, Théorie des opérations linéaires, Monogr. Mat., Tom I, Warsaw, 1932.
- Richard Bellman, Limit theorems for non-commutative operations. I, Duke Math. J. 21 (1954), 491–500. MR 62368
- Armand Borel and Harish-Chandra, Arithmetic subgroups of algebraic groups, Ann. of Math. (2) 75 (1962), 485–535. MR 147566, DOI 10.2307/1970210
- Leo Breiman, The strong law of large numbers for a class of Markov chains, Ann. Math. Statist. 31 (1960), 801–803. MR 117786, DOI 10.1214/aoms/1177705810
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.
- Harry Furstenberg, A Poisson formula for semi-simple Lie groups, Ann. of Math. (2) 77 (1963), 335–386. MR 146298, DOI 10.2307/1970220
- H. Furstenberg and H. Kesten, Products of random matrices, Ann. Math. Statist. 31 (1960), 457–469. MR 121828, DOI 10.1214/aoms/1177705909
- I. M. Gel′fand, Spherical functions in symmetric Riemann spaces, Doklady Akad. Nauk SSSR (N.S.) 70 (1950), 5–8 (Russian). MR 0033832
- Roger Godement, A theory of spherical functions. I, Trans. Amer. Math. Soc. 73 (1952), 496–556. MR 52444, DOI 10.1090/S0002-9947-1952-0052444-2
- Ulf Grenander, Some non linear problems in probability theory, Probability and statistics: The Harald Cramér volume (edited by Ulf Grenander), Almqvist & Wiksell, Stockholm; John Wiley & Sons, New York, N.Y., 1959, pp. 108–129. MR 0109361
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- G. D. Mostow, Homogeneous spaces with finite invariant measure, Ann. of Math. (2) 75 (1962), 17–37. MR 145007, DOI 10.2307/1970416
- Takesi Watanabe, On the theory of Martin boundaries induced by countable Markov processes, Mem. Coll. Sci. Univ. Kyoto Ser. A. Math. 33 (1960/61), 39–108. MR 120682, DOI 10.1215/kjm/1250776061
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 108 (1963), 377-428
- MSC: Primary 60.08; Secondary 60.66
- DOI: https://doi.org/10.1090/S0002-9947-1963-0163345-0
- MathSciNet review: 0163345