The role of the Appell transformation in the theory of heat conduction
HTML articles powered by AMS MathViewer
- by D. V. Widder
- Trans. Amer. Math. Soc. 109 (1963), 121-134
- DOI: https://doi.org/10.1090/S0002-9947-1963-0154068-2
- PDF | Request permission
References
- P. Appell, Sur l’équation ${\partial ^2}z/\partial {x^2} - \partial z/\partial y$ et la théorie de la chaleur, J. Math. Pures Appl. 8 (1892), 187-216.
- Ralph Philip Boas Jr., Entire functions, Academic Press, Inc., New York, 1954. MR 0068627 S. Bochner, Vorlesungen über Fouriersche Integrale, 1932.
- I. I. Hirschman Jr., A note on the heat equation, Duke Math. J. 19 (1952), 487–492. MR 49430
- I. I. Hirschman and D. V. Widder, The convolution transform, Princeton University Press, Princeton, N. J., 1955. MR 0073746
- P. C. Rosenbloom and D. V. Widder, Expansions in terms of heat polynomials and associated functions, Trans. Amer. Math. Soc. 92 (1959), 220–266. MR 107118, DOI 10.1090/S0002-9947-1959-0107118-2
- D. V. Widder, Positive temperatures on an infinite rod, Trans. Amer. Math. Soc. 55 (1944), 85–95. MR 9795, DOI 10.1090/S0002-9947-1944-0009795-2 —, Transformations associées à l’équation de la chaleur, C. R. Acad. Sci. Paris, 253 (1961), 915-917.
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 109 (1963), 121-134
- MSC: Primary 44.30
- DOI: https://doi.org/10.1090/S0002-9947-1963-0154068-2
- MathSciNet review: 0154068