Partially bounded $J$-fractions
HTML articles powered by AMS MathViewer
- by Lester G. Riggs and W. T. Scott
- Trans. Amer. Math. Soc. 109 (1963), 45-55
- DOI: https://doi.org/10.1090/S0002-9947-1963-0155964-2
- PDF | Request permission
References
- Joseph J. Dennis and H. S. Wall, The limit-circle case for a positive definite $J$-fraction, Duke Math. J. 12 (1945), 255–273. MR 13436
- H. S. Wall, Analytic Theory of Continued Fractions, D. Van Nostrand Co., Inc., New York, N. Y., 1948. MR 0025596
- H. S. Wall, Bounded $J$-fractions, Bull. Amer. Math. Soc. 52 (1946), 686–693. MR 17397, DOI 10.1090/S0002-9904-1946-08630-9
- H. S. Wall and Marion Wetzel, Contributions to the analytic theory of $J$-fractions, Trans. Amer. Math. Soc. 55 (1944), 373–392. MR 0011339, DOI 10.1090/S0002-9947-1944-0011339-6
- H. S. Wall and Marion Wetzel, Quadratic forms and convergence regions for continued fractions, Duke Math. J. 11 (1944), 89–102. MR 11340
Bibliographic Information
- © Copyright 1963 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 109 (1963), 45-55
- MSC: Primary 30.25
- DOI: https://doi.org/10.1090/S0002-9947-1963-0155964-2
- MathSciNet review: 0155964