Extending a disk to a sphere
Author:
Joseph M. Martin
Journal:
Trans. Amer. Math. Soc. 109 (1963), 385-399
MSC:
Primary 54.78
DOI:
https://doi.org/10.1090/S0002-9947-1963-0158381-4
MathSciNet review:
0158381
Full-text PDF Free Access
References | Similar Articles | Additional Information
-
J. W. Alexander, An example of a simply connected surface bounding a region which is not simply connected, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 8-10.
R. J. Bean, On subsets of a disk which contain all the wild points of the disk, Abstract 587-31, Notices Amer. Math. Soc. 8 (1961), 577.
- R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1–15. MR 123302
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465–483. MR 87090 ---, Each disk in each $3$-manifold is pierced by a tame arc, Abstract 559-114, Notices Amer. Math. Soc. 6 (1959), 510.
- R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145–158. MR 61377, DOI https://doi.org/10.2307/1969836
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979–990. MR 27512, DOI https://doi.org/10.2307/1969408 D. Gillman, Note concerning a wild sphere of Bing, Abstract 584-1, Notices Amer. Math. Soc. 8 (1961), 496.
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12–34. MR 91457, DOI https://doi.org/10.1090/S0002-9947-1955-0091457-4
- C. D. Papakyriakopoulos, On Dehn’s lemma and the asphericity of knots, Ann. of Math. (2) 66 (1957), 1–26. MR 90053, DOI https://doi.org/10.2307/1970113
- Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI https://doi.org/10.1007/BF02392437
Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78
Retrieve articles in all journals with MSC: 54.78
Additional Information
Article copyright:
© Copyright 1963
American Mathematical Society