EXTENDING A DISK TO A SPHERE(1)

BY

JOSEPH M. MARTIN(2)

This paper deals with the problem of extending a disk in E^3 to a 2-sphere in E^3. In [5] R. H. Bing points out that there is a disk in E^3 which is not a subset of any 2-sphere in E^3 and gives an example of such a disk. This example is reproduced as Example 1 of §III, and Theorem 2 of §II is used to give a proof that it does not lie on a 2-sphere in E^3. In the same paper Bing proves that "small" subdisks of a disk in E^3 lie on 2-spheres in E^3.

Theorem 2.1 of [5]. Suppose that D is a disk in E^3 and $p \in \text{Int} D$. Then there is a 2-sphere S in E^3 and a disk D' in D such that $p \in \text{Int} D'$ and $D' \subset S$.

In [9], it is shown that if D is a disk in E^3 which is locally polyhedral at each point of $\text{Int} D$, then D lies on a 2-sphere in E^3.

In this paper, Theorem 1 of §II gives a necessary and sufficient condition on the embedding of a disk in E^3 in order that it should lie on a 2-sphere in E^3. Theorem 2 of §II shows that in some cases the fact that a certain subdisk of a disk lies on a 2-sphere implies that the disk itself lies on a 2-sphere. This theorem is an extension of a result of R. J. Bean [2].

§III of this paper is devoted to examples. Example 2 of §III shows that a disk need not lie on a 2-sphere even though both (1) every closed proper subset lies on a 2-sphere, and (2) every arc on the disk is tame. Example 3 of §III shows that a disk D need not lie on a 2-sphere even though $\text{Bd} D$ can be shrunk to a point in $E^3 \setminus \text{Int} D$.

I. **Notation and terminology.** If n is a positive integer, E^n will denote Euclidean n-space with the usual metric topology.

A *disk* is a space which is topologically equivalent to \{(x_1, x_2); (x_1, x_2) \in E^2 and $x_1^2 + x_2^2 \leq 1$\}. An *annulus* is a space which is topologically equivalent to the product of a circle and a closed interval. If D is a disk, the interior of D, denoted by $\text{Int} D$, is the set of all points of D which have neighborhoods homeomorphic with E^2, and the *boundary* of D, denoted by $\text{Bd} D$, is $D \setminus \text{Int} D$. Similar terminology is used for the interior and boundary of an annulus. The boundary of an annulus A is the union of two disjoint simple

Presented to the Society, November 18, 1961 under the title *Disks on spheres*; received by the editors December 6, 1962.

(1) This paper is a major part of the author's doctoral dissertation at the State University of Iowa written under the direction of Professor S. Armentrout.

(2) This paper was written while the author was a Fellow of the National Science Foundation.

385
closed curves J_1 and J_2, and J is a boundary component of A if and only if either $J = J_1$ or $J = J_2$.

The word "interior" is used in another sense. If S is a sphere with handles in E^3, then the interior of S, denoted by $\text{Int} S$, is the bounded complementary domain of S. This double usage should not cause confusion.

A 2-sphere is a space which is homeomorphic with

$$\{(x_1, x_2, x_3); (x_1, x_2, x_3) \in E^3 \text{ and } x_1^2 + x_2^2 + x_3^2 = 1\}.$$

Suppose that n and k are positive integers and $n \leq k$. A set X in E^k is an n-manifold if and only if each point of X has a neighborhood in X which is homeomorphic with E^n, and a set X in E^k is an n-manifold-with-boundary if and only if each point in X has a neighborhood whose closure in X is homeomorphic with the unit cube in E^n.

A set X in E^3 is a polyhedron or is polyhedral if and only if for some n, $n = 0, 1, 2,$ or 3, X is the union of the elements of a rectilinear n-complex. A set X in E^3 is locally polyhedral at a point p of X if and only if there exists an open set N containing p such that $N \cap X$ is a polyhedron.

Suppose that X is a closed set in E^3 and X is homeomorphic with a polyhedron. X is tame if and only if there is a homeomorphism h of E^3 onto itself such that $h(X)$ is a polyhedron, and X is wild if and only if X is not tame. Examples of wild sets may be found in [1], [3], [7], and [8].

A simple closed curve J in a space X can be shrunk to a point in X if and only if there is a continuous map f of a standard 2-simplex E into X such that f carries $\text{Bd} E$ homeomorphically onto J.

A space X is simply connected if and only if each simple closed curve in X can be shrunk to a point in X.

A triangulated space D is a Dehn disk if and only if there exists a semi-linear map f of a standard 2-simplex E onto D such that there exists an annulus A on E such that (i) $\text{Bd} E \subset A$, (ii) f is a homeomorphism on A, and (iii) $f(E - A) \cap f(A) = \emptyset$.

A map f satisfying the above conditions is a defining map for D.

If D is a Dehn disk and f is a defining map for D, the boundary of D is $f(\text{Bd} E)$.

If D is a Dehn disk and f is a defining map for D, then the set of f-singularities of D is $\{z; z \in D$ and $f^{-1}(z)$ is nondegenerate$\}$.

If n is a positive integer and x and y are points of E^n, the Euclidean distance from x to y is denoted by $d(x, y)$.

For terms not defined in this paper the reader may see [4] or [6].

II. Conditions under which a disk can be extended to a sphere.

Theorem 1. A disk D in E^3 lies on a 2-sphere in E^3 if and only if there exists an annulus A in E^3 such that $\text{Bd} D \subset \text{Bd} A$, $D \cap A = \text{Bd} D$, and $\text{Bd} A - \text{Bd} D$ can be shrunk to a point in $E^3 - D$.
The proof of Theorem 1 given here relies heavily on an approximation theorem proved by Bing and Dehn’s Lemma as proved by Papakyriakopoulos. For completeness these are stated below.

BING’S APPROXIMATION THEOREM. If, in a triangulated 3-manifold S, M is a 2-manifold-with-boundary and f is a non-negative continuous real-valued function defined on M, there is in S a 2-manifold-with-boundary M' and a homeomorphism h of M onto M' such that (1) $d(x,h(x)) \leq f(x)$ and (2) if $f(x) > 0$, M' is locally polyhedral at $h(x)$ [4].

DEHN’S LEMMA (AS PROVED BY PAPAKYRIAKOPOULOS). Suppose that D is a Dehn disk in E^3, f is a defining map for D, and U is a neighborhood of the f-singularities of D. Then there exists a polyhedral disk D' in E^3 such that $\text{Bd}D' = f$-boundary of D and $D' \subset D \cup U$ [10].

Proof of Theorem 1. The necessity of the condition is obvious.

Let D be a disk in E^3 and A an annulus in E^3 such that D and A satisfy the hypothesis of Theorem 1. Let J_1 denote the boundary component of A different from $\text{Bd}D$. Since J_1 can be shrunk to a point in $E^3 - D$, there exists a continuous map f_1 of a standard 2-simplex E into $E^3 - D$ taking the boundary of E homeomorphically onto J_1. Let K denote $f_1(E)$. There is no loss in generality in assuming that $K \cap A = J_1$. This is true since $K \cap D = \emptyset$, and if necessary the annulus A can be trimmed back to a smaller annulus having the desired property.

A continuous non-negative real-valued function g is defined on A as follows: if $x \in A$, $g(x) = \min \{\text{dist}(x, D), \text{dist}(x, K)\}$. g is zero on $J_1 \cup \text{Bd}D$ and positive elsewhere. By Bing’s Approximation Theorem there exists an annulus A' such that $\text{Bd}A' = J_1 \cup \text{Bd}D$, $A' \cap D = \text{Bd}D$, $A' \cap K = J_1$, and if $x \in \text{Int}A'$, then A' is locally polyhedral at x.

Let J' be a polygonal simple closed curve in $\text{Int}A'$ which is homotopic in A' to J_1. Let B denote the annulus on A' whose boundary components are $\text{Bd}D$ and J', C' denote $[(A' \cup K) - B]$, v_1, v_2, \ldots, and v_n denote the vertices of J', and e denote $\text{dist}(C', D)$. There exists a continuous map f_2 of a standard 2-simplex E onto C' carrying $\text{Bd}E$ onto J' and which is one-to-one on $\text{Bd}E$. Let r be a positive number such that if $d(x, y) < r$, then $d(f_2(x), f_2(y)) < e$.

Let T be a triangulation of E such that $(\text{mesh} T) < r$ and $f_2^{-1}(v_1), f_2^{-1}(v_2), \ldots$, and $f_2^{-1}(v_n)$ are vertices of T. Now there exists a piecewise linear map f_3 of E into E^3 defined as follows: Suppose that $\langle u_1, u_2, u_3 \rangle$ is a 2-simplex in T. For $i = 1, 2, \text{or} 3$, let $f_3(u_i)$ be $f_2(u_i)$, and let f_3 be extended linearly, taking u_1, u_2, u_3 onto the simplex in E^3 determined by $f_3(u_1), f_3(u_2), \text{and} f_3(u_3)$. Because of the choice of e and r, $f_3(E) \cap D = \emptyset$.

Let J'' be a polygonal simple closed curve in $\text{Int}A'$ such that J'' is homotopic to $\text{Bd}D$ in $A' - J'$ and if A_1 denotes the annulus on A' bounded by J'' and $\text{Bd}D$, then $A_1 \cap f_3(E) = \emptyset$. Let K' denote $[(A' - A_1) \cup f_3(E)]$. K' is a Dehn disk and
there exists a defining map \(f_4 \) from a standard 2-simplex \(E_1 \) onto \(K' \) such that \(J'' \) is the \(f_4 \)-boundary of \(K' \). Here it is convenient to think of \(E \) as being contained in the interior of \(E_1 \) and to think of \(f_4 \) as an extension of \(f_3 \).

Let \(U \) be a neighborhood of the \(f_4 \)-singularities of \(K' \) such that \(U \cup (D \cup A_1) = \emptyset \). Since \(K' \) and \(U \) satisfy the hypothesis of Dehn's Lemma, as proved by Papakyriakopoulos, there is a polyhedral disk \(K^* \) such that \(\text{Bd} \; K^* = J'' \) and \(K^* \subseteq K' \cup U \). The last condition implies that \(K^* \cap (D \cup A_1) = J'' \).

Let \(D_1 \) denote \(K^* \cup A_1 \). \(D_1 \) is a disk such that the common part of \(D \) and \(D_1 \) is the boundary of each. This shows that \(D \) lies on a 2-sphere in \(E^3 \).

Corollary 1.1. Suppose that \(D \) is a disk in \(E^3 \) such that (1) \(E^3 - D \) is simply connected, and (2) there is an open subset \(U \) of \(D \) such that \(\overline{U} \cap \text{Bd} \; D = \emptyset \) and \(D - U \) lies on a 2-sphere in \(E^3 \). Then \(D \) lies on a 2-sphere in \(E^3 \).

Proof. Suppose that \(D \) and \(U \) satisfy the hypothesis of the corollary. Let \(S \) be a 2-sphere in \(E^3 \) such that \(D - U \subseteq S \). Now there exists an annulus \(A \) on \(S - \text{Int} \; D \) such that \(\text{Bd} \; D \subseteq A \) and \(A \cap \overline{U} = \emptyset \). Since \(E^3 - D \) is simply connected, \(\text{Bd} \; A - \text{Bd} \; D \) can be shrunk to a point in \(E^3 - D \). It follows from Theorem 1 that \(D \) lies on a 2-sphere in \(E^3 \).

Corollary 1.2. If \(D \) is a disk in \(E^3 \) such that \(\text{Bd} \; D \) can be shrunk to a point in \(E^3 - \text{Int} \; D \) and \(D' \) is a subdisk of \(D \) such that \(D' \subseteq \text{Int} \; D \), then \(D' \) lies on a 2-sphere in \(E^3 \).

Theorem 2. Suppose that \(D \) is a disk in \(E^3 \) which lies on a 2-sphere in \(E^3 \). Suppose further that \(A \) is a polyhedral annulus in \(E^3 \) such that \(A \cap D = \text{Bd} \; D \) and \(\text{Bd} \; D \subseteq \text{Bd} \; A \). Then \(D \cup A \) lies on a 2-sphere in \(E^3 \).

Before proceeding with the proof of Theorem 2 some additional definitions and terminology will be introduced.

If \(J \) is a simple closed curve in \(E^3 \), the statement that \(J \) is **unknotted** means that there is a homeomorphism of \(E^3 \) onto itself carrying \(J \) into a plane.

A **torus** is a space which is topologically equivalent to the product of two circles. A **solid torus** is a space which is topologically equivalent to the product of a circle and a disk. A torus \(T \) is **unknotted** if and only if the closure of each complementary domain of \(T \) in \(S^3 \) is a solid torus. If \(T \) is an unknotted torus in \(E^3 \) the solid torus \(T \cup \text{Int} \; T \) will be denoted by \(T^* \).

Let \(T \) be an unknotted polyhedral torus in \(E^3 \). A polygonal simple closed curve \(J \) on \(T \) is **trivial** on \(T \) if and only if \(J \) is null homologous on \(T \). A polygonal simple closed curve \(J \) on \(T \) is **meridional** on \(T \) if and only if \(J \) is nontrivial on \(T \) and \(J \) bounds a disk in \(T^* \). A polygonal simple closed curve \(J \) on \(T \) is **longitudinal** on \(T \) if and only if \(J \) is nontrivial on \(T \) and \(J \) bounds a disk in \(E^3 - \text{Int} \; T \). In [11] it is shown that any two meridional curves are homologous on \(T \) and that
any two longitudinal curves are homologous on T. It is also shown that if J_1 is meridional (longitudinal) and J_2 is homologous to J_1 on T, then J_2 is meridional (longitudinal). A polyhedral disk D such that $\text{Int } D \subset \text{Int } T$ and such that $\text{Bd } D$ is a meridional curve on T is a meridional disk of T^*.

Let T^* be separated by two disjoint meridional disks D_1 and D_2 into two 3-cells K_1 and K_2. Let x be a point of $\text{Int } D_1$ and y be a point of $\text{Int } D_2$. Let a_1 and a_2 be unknotted chords of K_1 and K_2, respectively, joining the points x and y. The simple closed curve $a_1 \cup a_2$ is a centerline of T^*. In [11] it is shown that if L_1 and L_2 are centerlines of T^*, then there exists a semi-linear mapping of E^3 onto itself which is the identity of $E^3 - T^*$ and takes L_1 onto L_2.

The preceding terminology is that of Schubert in [11], and the first of the following lemmas is an immediate consequence of results in the same paper.

Lemma 1. If T is an unknotted polyhedral torus in E^3, D is a disk in E^3 bounded by a centerline of T^*, and J is a nontrivial polygonal simple closed curve on T such that $J \cap D = \emptyset$, then J is longitudinal on T.

Lemma 2. If T is an unknotted polyhedral torus in E^3 and J_1 and J_2 are polygonal simple closed curves on T such that any nontrivial simple closed curve in $J_1 \cup J_2$ is longitudinal on T, then there exists an open annulus O on T such that J_1 and J_2 are homotopic in $T - O$.

Proof. Let T, J_1, and J_2 satisfy the hypothesis. Without loss of generality it is assumed that $J_1 \neq J_2$, $J_1 \cap J_2 \neq \emptyset$, and $J_1 \cap J_2$ contains no arc. Let A be the annulus ring obtained by cutting T along J_1 and let P be the identification mapping of A onto T.

Let the boundary components of A be denoted by L_1 and L_2. Let C be a component of $J_2 - J_1$. $P^{-1}(C)$ is an arc in A with both endpoints on $\text{Bd } A$. Suppose that $P^{-1}(C)$ has an endpoint q_1 on L_1 and an endpoint q_2 on L_2. Let q_i denote the point on L_2 having the same image under P as q_i. Let a be an arc in L_2 from q_2 to q_1. Then $P^{-1}(C) \cup a$ is an arc in A from q_1 to q_1', and hence $P(P^{-1}(C) \cup a)$ is a simple closed curve on T. But $P(P^{-1}(C) \cup a)$ is contained in $J_1 \cup J_2$ and is not longitudinal on T. This is contradictory to the hypothesis and it follows that either both endpoints of $P^{-1}(C)$ are on L_1 or both endpoints of $P^{-1}(C)$ are on L_2.

Let $J_1 \cap J_2$ be $\{p_1, p_2, \ldots, p_n\}$, the components of $J_2 - J_1$ be C_1, C_2, \ldots, and C_n and assume that the notation is chosen so that $C_1 \cap C_n = p_1$, and if $i + 1 \leq n$, $C_i \cap C_{i+1} = p_{i+1}$. For each i, $i \leq n$, let D_i denote the open disk on $\text{Int } A$ bounded by $P^{-1}(C_i)$. Then D_i is a disk in A which has an arc in common with $\text{Bd } A$, and $P(D_i)$ is a disk in T bounded by the union of an arc in J_1 from p_i to p_{i+1} and an arc in J_2 from p_i to p_{i+1}. Now $\text{Int } A - \bigcup_{i=1}^n D_i$ is an open annulus on A. Let O denote $P(\text{Int } A - \bigcup_{i=1}^n D_i)$. O is an open annulus on T such that $O - O \subset J_1 \cup J_2$. For each i, $i \leq n$, let h_i be a homotopy in D_i pulling $P^{-1}(C_i)$ into $\text{Bd } A$ and leaving
$P^{-1}(p_i)$ and $P^{-1}(p_{i+1})$ fixed. Then Ph_i is a homotopy in $P(D_i)$ pulling an arc in J_2 bounded by p_i and p_{i+1} onto an arc in J_1 bounded by p_i and p_{i+1}, leaving p_i and p_{i+1} fixed. It follows that there is a homotopy H in $T - O$ pulling J_1 onto J_2.

Lemma 3. Suppose that T is a polyhedral unknotted torus in E^3, D is a disk such that $Bd D$ is a centerline of T^*, and J_1 and J_2 are polygonal longitudinal simple closed curves on T such that for $i = 1$ or 2, $J_i \cap D = \emptyset$. Then there is an open annulus O on T such that J_1 and J_2 are homotopic in $T - O$ and if M is a meridional polygonal simple closed curve on T, then $M \cap O \cap D \neq \emptyset$.

Proof. Let T, J_1, J_2, and D satisfy the hypothesis of the lemma. Let L be a polygonal simple closed curve in $D \cap T$ which is a longitude of T. Now if $J_1 \cap J_2 = \emptyset$, let O be the component of $T - (J_1 \cup J_2)$ which contains L. If $J_1 \cap J_2 \neq \emptyset$, let O be the open annulus promised by Lemma 2. In this case it follows from the proof of Lemma 2 that $L \subset O$. This is because the components of $T - (O \cup J_1 \cup J_2)$ are open disks. Now if M is a meridian of T, then $M \cap L \neq \emptyset$, since it follows from Lemma 1 that every meridian of T intersects every longitude of T. Hence $M \cap O \cap D \neq \emptyset$.

Lemma 4. Suppose that A is a planar polyhedral annulus in E^3, J_1 and J_2 are the boundary components of A, and $e > 0$. Then there exists a polyhedral torus T_e such that (1) J_1 is a centerline of T^*_e, (2) $J_2 \subset E^3 - T^*_e$, (3) $A \cap T_e$ is a longitudinal polygonal simple closed curve on T, and (4) if $x \in T_e$ there exists a meridional polygonal simple closed curve J_x on T_e such that $x \in J_x$ and $(\text{diam } J_x) < e$.

Proof of Theorem 2. Let D and A satisfy the hypothesis of Theorem 2. Let S be a 2-sphere in E^3 such that $D \subset S$. Let D' denote $S - \text{Int} D$. D' is a disk such that $D \cap D' = Bd D$ and $Bd D' = Bd D$. By the Bing Approximation Theorem there is no loss in generality in assuming that D' is locally polyhedral except at points on $Bd D'$. Let the simple closed curve $Bd A - D$ be denoted by J. It follows from Lemma 4 and the fact that A is polyhedral that there exists a sequence T_1, T_2, \ldots of polyhedral tori such that for each i, (1) $Bd D$ is a centerline of T_i, (2) $T_{i+1} \subset \text{Int} T_i$, (3) $J \subset E^3 - T_i^*$, (4) $A \cap T_i$ is a longitudinal simple closed curve on T, (5) T_i is unknotted, and (6) if $x \in T_i$ there exists a polygonal meridional simple closed curve M_x on T_i such that $x \in M_x$ and $(\text{diam } M_x) < 1/i$.

Without loss of generality it may be assumed that the vertices of D' are in relative general position with the vertices of each of A, T_1, T_2, \ldots. It follows that for each i, $D' \cap T$ is a finite collection of mutually disjoint simple closed curves. It follows from Lemma 1 and the fact that $Bd D'$ is a centerline of T_i
that each of these simple closed curves is either trivial on T_i or longitudinal on T_i. Now D' may be adjusted so that, for each i, $D' \cap T_i$ is a single longitudinal simple closed curve on T_i, and it is further assumed that D' is so adjusted.

Let e be $\text{dist}(T_2, E^3 - T_i^*)$. Then if $n > 2$ and $x \in T_n$, $\text{dist}(x, E^3 - T_i^*) > e$. Now there exists a positive number r such that if x and y are points of $\text{Int} D$ and $d(x, y) < r$, then there exists an arc a on $\text{Int} D$ from x to y whose diameter is less than e.

Let n be a positive integer such that $n > 2$ and $1/n < r$. Let J_1 denote $A \cap T_n$ and J_2 denote $D' \cap T_n$. Now for each i, $i = 1$ or 2, $J_i \cap D = \emptyset$ and it follows from Lemma 3 that there exists an open annulus O on T_n such that J_1 and J_2 are homotopic in $T_n - O$ and if M is a polygonal meridional simple closed curve on T_n, then $M \cap D \cap O = \emptyset$.

Suppose that $D \cap (T_n - O) \neq \emptyset$. Let x be a point of $D \cap (T_n - O)$ and let M_x be a polygonal meridional simple closed curve on T_n such that $x \in M_x$ and $(diam M_x) < r$. Let y be a point of $M_x \cap D \cap O$. Now there exists an arc a on $\text{Int} D$ from x to y such that $(diam a) < e$, and it follows from the choice of e that $a \subset T_i^*$. Since $a \cap Bd D = \emptyset$, there exists an integer k, $k > n$, such that $a \cap T_k^* = \emptyset$. Hence x and y are in the same component of $[\text{Int} T_i^* - (T_k^* \cup A \cup D')]$.

Since A and D' are in relative general position, $J \subset E^3 - T_i^*$, and $D' \cap T_n$ is a single longitudinal simple closed curve on T_n, it follows that the intersection of T_n and the component of $[\text{Int} T_i^* - (T_k^* \cup A \cup D')]$ containing x is the component of $T_n - (J_1 \cup J_2)$ containing x. Since x and y are in different components of $T_n - (J_1 \cup J_2)$, it follows that x and y are in different components of $[\text{Int} T_i^* - (T_k^* \cup A \cup D')]$. This is a contradiction and hence $D \cap (T_n - O) = \emptyset$.

Since J_1 and J_2 are homotopic in $T_n - O$, and since J_2 is contained in the interior of the disk D', it follows that J_1 can be shrunk to a point missing D. It follows from Theorem 1 that there exists a disk D_1 in $D \cup A$ such that $D \subset \text{Int} D_1$ and D_1 lies on a 2-sphere in E^3. It follows from [2] that $D \cup A$ lies on a 2-sphere in E^3. This establishes Theorem 2.

Corollary 2.1. If D is a disk in E^3 and A is a tame annulus such that $A \subset D$, $Bd D \subset Bd A$, and $Bd D$ can be shrunk to a point in $E^3 - \text{Int} D$, then D lies on a 2-sphere in E^3.

Proof. Let D and A satisfy the hypothesis of the corollary. Since A is tame there is a homeomorphism h of E^3 onto itself carrying A onto a polyhedral annulus A' and D onto a disk D'. Since $Bd D$ can be shrunk to a point in $E^3 - \text{Int} D$, $Bd D'$ can be shrunk to a point in $E^3 - \text{Int} D'$, and it follows from Theorem 1 that there exists a disk D_1 such that $D_1 \subset \text{Int} D'$, $Bd D_1$ is polygonal, $Bd D_1 \subset A'$, and D_1 lies on a 2-sphere S in E^3. It follows from Theorem 2 that D' lies on a 2-sphere S' in E^3. Then $h^{-1}(S')$ is a 2-sphere in E^3 such that $D \subset h^{-1}(S')$. This establishes Corollary 2.1.
III. Examples.

Example 1. A disk D in E^3 which does not lie on a 2-sphere in E^3.

Description. The disk D is obtained by taking a horizontal disk D' in E^3; removing two circular holes from $\text{Int} D'$; adding tubes from the holes, one going down and the other up and around; and finally adding hooked disks as in the construction of the Alexander Horned Sphere [1]. See Figure 1.

![Figure 1](image_url)

Proposition 1.1. The disk D of Example 1 does not lie on a 2-sphere in E^3.

Proof. It follows from repeated application of Theorem 9 of [3] that the simple closed curve J of Figure 1 cannot be shrunk to a point in $E^3 - D$. Let A be a polyhedral annulus such that $D \cap A = \text{Bd} D$ and $\text{Bd} A = J \cup \text{Bd} D$. It follows from Theorem 2 that D lies on a 2-sphere in E^3 if and only if $D \cup A$ lies on a 2-sphere in E^3. $D \cup A$ does not lie on a 2-sphere since J cannot be shrunk to a point in $E^3 - D$. This establishes Proposition 1.1.

Example 2. A disk D in E^3 such that (1) D does not lie on a 2-sphere in E^3, (2) if C is a proper closed subset of D then there exists a 2-sphere S_c such that $C \subset S_c$, and (3) every arc in D is tame.
getDescription. Let D_0 be a horizontal disk in E^3 with a rectangular boundary. D_0 is now subdivided into two disks E_1 and E_2 whose common part is an arc. Each E_i is thickened into a topological cube. The thickened E_i may be regarded as $E_i \times [0,1]$ with E_i identified with $E_i \times \{1/2\}$. From the center of $E_1 \times \{0\}$ and from the center of $E_2 \times \{1\}$ solid feelers with solid loops H_1 and H_2 are erected in such a way that the loop of H_1 goes around the stem of H_2 and the loop of H_2 goes around the stem of H_1. See Figure 2. The thickened E_i plus H_i is topologically a solid torus T_i. T_i will be called a cube-with-eye-bolt. The disk D will lie in $T_1 \cup T_2$. The construction which follows is motivated by Example 2 of [3].

For each i, $i = 1$ or 2, a slice is removed from the loop of T_i resulting in a topological cube K_i. $\text{Bd}E_i$ separates $\text{Bd}K_i$ into two disks one of which has a "hook" in it. The interior of this hooked disk is pushed slightly into $\text{Int}T_i$ to form a disk A_i.

Let W_1 denote $T_1 \cup T_2$ and let D_1 denote $A_1 \cup A_2$. The 3-manifold-with-boundary W_1 is a first approximation to D and the disk D_1 is also a first approximation to D.

Now each A_i is subdivided into fifteen subdisks $E_{i1}, E_{i2}, \ldots, E_{i15}$ such that if $j \leq 14$, E_{ij} and E_{ij+1} share an edge, and E_{i1} and E_{i15} share an edge. The disks E_{ij} are thickened slightly and solid feelers with solid loops H_{ij} are added in such a way that the loop of H_{ij} circles the stem of H_{ij+1}, $j \leq 14$, and the loop of H_{i15} circles the stem of H_{i1}. The stems of H_{i7} and H_{i11} also intertwine as shown in
Figure 3. Let T_{ij} denote $E_{ij} \cup H_{ij}$. The T_{ij}'s are chosen so that $\bigcup_{j=1}^{15} T_{ij} \subset T_i$. In each T_{ij} a disk A_{ij} is placed exactly as A_i was placed in T_i in the previous step. Let W_2 denote $\bigcup_{i=1}^{2} (\bigcup_{j=1}^{15} T_{ij})$ and D_2 denote $\bigcup_{i=1}^{2} (\bigcup_{j=1}^{15} A_{ij})$. W_2 and D_2 are second approximations to the disk D.

Now for each positive integer k, W_{k+1} and D_{k+1} are obtained from D_k in a manner analogous to the way in which W_2 and D_2 are obtained from D_1.

Let D be $\bigcap_{i=1}^{\infty} W_i$; D is also $\lim D_i$. The same argument which is used to show that Example 2 of [3] is a 2-sphere can be used to show that D is a disk.
Proposition 2.1. The simple closed curve J of Figure 2 cannot be shrunk to a point in $E^3 - D$.

Proof. Suppose that J can be shrunk to a point in $E^3 - D$. Then, since $D = \bigcap_{i=1}^{\infty} W_i$, there exists a positive integer n such that J can be shrunk to a point in $E^3 - W_n$. Let k be $\min\{n; J$ can be shrunk to a point in $E^3 - W_n\}$.

For each i, let W'_i be the set obtained from W_i by filling each hole in each loop in W_i. Let W''_i be the set obtained by removing slices from the loops of W_i and then adding back the intertwining stems of the 7th and 11th feelers at the next stage.

Since W'_i is a cube with handles and J circles one of these handles exactly once, J cannot be shrunk to a point in $E - W'_i$. It follows from Theorem 11 of [3] that J cannot be shrunk to a point in $E^3 - W'_i$ and hence $k > 1$.

Since J cannot be shrunk to a point in $E^3 - W'_k$, it follows from Theorem 9 of [3] that J cannot be shrunk to a point in $E^3 - W''_k$. By considering a slight isotopy of E^3 together with the adding of handles it follows that J cannot be shrunk to a point in $E^3 - W''_k$. It follows from Theorem 11 of [3] that J cannot be shrunk to a point in $E^3 - W_k$. This is a contradiction and hence establishes Proposition 2.1.

Proposition 2.2. The disk D of Example 2 does not lie on any 2-sphere in E^3.

Proof. Let A be a polyhedral annulus in E^3 such that $D \cap A = \text{Bd} D$ and $\text{Bd} A = \text{Bd} D \cup J$. Now, by Theorem 2, D lies on a 2-sphere in E^3 if and only if $D \cup A$ lies on a 2-sphere in E^3. $D \cup A$ does not lie on a 2-sphere in E^3 since, by Proposition 2.1, J cannot be shrunk to a point in $E^3 - D$. This establishes Proposition 2.2.

It will next be shown that if C is a proper closed subset of the disk D of Example 2, then C lies on a 2-sphere in E^3. Before proceeding with the proof of this assertion, two definitions and a theorem from [3] will be stated.

Associated annulus. If each of the thickened E_i's is regarded as $E_i \times [0,1]$ with E_i identified with $E_i \times \{1/2\}$, then the annulus associated with the topological torus T_i is $\text{Bd} E_i \times [0,1]$.

Associated cube. Suppose that C_i is a tame cube in the cube-with-eye-bolt T_i such that $\text{Bd} C_i \cap \text{Bd} T_i$ is the annulus associated with T_i. Then C_i is a cube associated with T_i.

Theorem 4 of [3]. Suppose that n and m are positive integers, $n > m$. Suppose that T is a cube-with-eye-bolt at the mth stage in the description of D and T' is a cube-with-eye-bolt at the nth stage in the description of D such that $T' \subset T$. Then if C' is a cube associated with T' there exists a cube C associated with T such that $C' \subset C$, and if T'' is a cube-with-eye-bolt at the nth stage in the description of D and $T'' \neq T'$, then $T'' \subset C$.

Let C be a proper closed subset of D. Consider the following modification of the construction of D which will result in a disk $D(C)$ such that $C \subseteq D(C)$. If $C \cap T_i \neq \emptyset$, let $T(C)_i$ be T_i. If $C \cap T_i = \emptyset$, let $T(C)_i$ be a cube associated with T_i which contains E_i. Let $W(C)_1$ denote $T(C)_1 \cup T(C)_2$. The 3-manifold-with-boundary $W(C)_1$ is a first approximation to $D(C)$.

Disks $A(C)_1$ and $A(C)_2$ are now selected in $T(C)_1$ and $T(C)_2$ in the following way:

1. If $T(C)_i = T_i$, let $A(C)_i$ be A_i.
2. If $T(C)_i$ is a cube associated with T_i, let $A(C)_i$ be E_i.

Let $D(C)_1$ denote $A(C)_1 \cup A(C)_2$. The disk $D(C)_1$ is also a first approximation to $D(C)$.

Suppose that i is an integer such that $T(C)_i = T_i$. Now if j is an integer such that $C \cap T_{ij} = \emptyset$, let $T(C)_{ij}$ be a cube associated with T_{ij} which contains E_{ij}. If k is an integer such that $C \cap T_{ik} \neq \emptyset$, let $T(C)_{ik}$ be T_{ik}.

Disks A_{ij} are now selected in $T(C)_{ij}$ in the following way:

1. If $T(C)_{ij} = T_{ij}$, let $A(C)_{ij}$ be A_{ij}.
2. If $T(C)_{ij}$ is a cube associated with T_{ij}, let $A(C)_{ij}$ be E_{ij}.

Suppose that i is an integer such that $T(C)_i$ is a cube associated with T_i. In this case $A(C)_i$ is E_i, and the disk $A(C)_i$ will be left alone during all successive approximations and will lie in the disk $D(C)$. In order to preserve consistent notation, $A(C)_i$ may be subdivided into fifteen subdisks $E(C)_{i1}$, $E(C)_{i2}$, ..., and $E(C)_{i15}$; these are thickened slightly to form 3-cells $T(C)_{i1}$, $T(C)_{i2}$, ..., and $T(C)_{i15}$. In this case $A(C)_{ij}$ is $E(C)_{ij}$.

Let $W(C)_2$ be $\bigcup_{i=1}^{2} \{ \bigcup_{j=1}^{15} T(C)_{ij} \}$ and let $D(C)_2$ be $\bigcup_{i=1}^{2} \{ \bigcup_{j=1}^{15} A(C)_{ij} \}$. The 3-manifold-with-boundary $W(C)_2$ and the disk $D(C)_2$ are second approximations to the disk $D(C)$.

This process is continued, resulting in a sequence $W(C)_1$, $W(C)_2$, ... of 3-manifolds-with-boundary and a sequence $D(C)_1$, $D(C)_2$, ... of disks. The disk $D(C)$ is $\bigcap_{i=1}^{\infty} W(C)_i$ or $\lim_{i \to \infty} D(C)_i$. The same argument which is used to show that Example 2 of [3] is a 2-sphere can be used to show that $D(C)$ is a disk. Since, for each i, $C \subseteq W(C)_i$, it follows that $C \subseteq D(C)$.

PROPOSITION 2.3. *For each proper closed subset* C *of* D, *the simple closed curve* J *of Figure 2 can be shrunk to a point in* $E^3 - D(C)$.

Proof. There is an integer n and a cube-with-eye-bolt T_n at the nth stage in the construction of D such that $T_n \cap C = \emptyset$. Let $k = \min \{ n ; \text{there is a cube-with-eye-bolt} \ T_n \text{ at the} \ n \text{th stage such that} \ T_n \cap C = \emptyset \}$. Let T_k be a cube-with-eye-bolt at the k th stage such that $T_k \cap C = \emptyset$. Then $T(C)_k$ is a cube associated with T_k. Without loss of generality it may be assumed that $T_k \subseteq T_1$.

It follows from Theorem 4 of [3] that there is a cube K associated with T_1 such that $T(C)_k \subseteq K$ and K contains every cube-with-eye-bolt at the kth stage.
in the construction of D with the exception of T_k. Hence $D(C) \subseteq K \cup T_2$. It follows from the proof of Theorem 3 of [3] that there is a tame cube W in $E^3 - J$ such that $K \cup T_2 \subseteq W$. Since $E^3 - W$ is simply connected, J can be shrunk to a point in $E^3 - W$, and therefore J can be shrunk to a point in $E^3 - D(C)$.

Proposition 2.4. If C is a proper closed subset of D then C lies on a 2-sphere in E^3.

Proof. Let A be a polyhedral annulus such that $\text{Bd } A = \text{Bd } D(C) \cup J$ and $A \cap D = \text{Bd } D(C)$. Such an annulus may be constructed in $(E^3 - W_1) \cup \text{Bd } D(C)$. Since, by Proposition 2.3, J can be shrunk to a point in $E^3 - D(C)$, it follows from Theorem 1 that there exists a 2-sphere S in E^3 such that $D(C) \cap S$. Since $C \subseteq D(C)$, $C \subseteq S$, and this establishes Proposition 2.4.

Proposition 2.5. Every arc on D is tame.

Proposition 2.5 can be established using either the method in [3] or in [8].

Example 3. A disk D such that $\text{Bd } D$ can be shrunk to a point in $E^3 - \text{Int } D$ but D does not lie on a 2-sphere in E^3.

Description. Let D_0 be a horizontal disk in E^3. D is obtained from D_0 as follows: remove a sequence of circular disks in $\text{Int } D_0$ which converge to a point p of $\text{Bd } D_0$; add back a sequence H_1, H_2, \ldots of disks with one handle in such a way that (i) H_1 goes down and around the boundary of D_0, (ii) for each i, the handle of H_i loops the stem of H_{i+1}, and (iii) H_1, H_2, \ldots converges to p; finally, for each i, a cylinder is removed from the handle of H_i and is replaced by a pair of Alexander hooked disks [1]. See Figures 4 and 5.

![Figure 4](image-url)
Proposition 3.1. The simple closed curve J of Figure 4 cannot be shrunk to a point in $E^3 - D$.

Proof. Proposition 3.1 follows from a repeated application of Theorems 9 and 11 of [3].

Proposition 3.2. The disk D of Example 3 does not lie on any 2-sphere in E^3.

Proof. Let A be a polyhedral annulus such that $A \cap D = \text{Bd} D$ and $\text{Bd} A = \text{Bd} D \cup J$. Since J cannot be shrunk to a point in $E^3 - D$, $D \cup A$ does not lie on a 2-sphere and it follows from Theorem 2 that D does not lie on a 2-sphere.

Proposition 3.3. The simple closed curve J of Figure 4 can be shrunk to a point in $E^3 - \text{Int} D$.

Proof. Let J bound a disk D_1 which extends over the right end of H_1 and which intersects the stem of H_2 in two simple closed curves J_1 and J_2, one above the loop of H_1 and one below the loop of H_1. Now D_1 can be adjusted to obtain a disk D_2 which extends over the right end of H_2 and which intersects the stem of H_3 in four simple closed curves. D_1 is adjusted by replacing the two subdisks on D_1 bounded by J_1 and J_2 by disks which extend over the right end of H_2. In a similar way D_2 may be adjusted to obtain a disk D_3 which extends over the right end of H_3.

Continuing this process a sequence D_1, D_2, \ldots of disks is obtained. D_{i+1} is obtained from D_i by replacing 2^i small subdisks on D_i.

Now there is a continuous map f of a standard 2-simplex s onto $\lim D_i$ such that f carries $\text{Bd} s$ homeomorphically onto J. Since $(\lim D_i) \cap \text{Int} D = \emptyset$, it follows that J can be shrunk to a point in $E^3 - \text{Int} D$.

Proposition 3.4. $\text{Bd} D$ can be shrunk to a point in $E^3 - \text{Int} D$.

Figure 5
Proof. This follows from Proposition 3.3 and the fact that \(\text{Bd} D \) and \(J \) are homotopic in \(E^3 - \text{Int} D \).

References

5. ———, *Each disk in each 3-manifold is pierced by a tame arc*, Abstract 559–114, Notices Amer. Math. Soc. 6 (1959), 510.

State University of Iowa, Iowa City, Iowa

The Institute for Advanced Study, Princeton, New Jersey