METRICAL THEOREMS ON FRACTIONAL PARTS OF SEQUENCES

BY
WOLFGANG M. SCHMIDT(i)

1. Introduction. Let \(C \) be the additive group of real numbers modulo 1, and let \(x \rightarrow \{x\} \) be the natural mapping from the reals onto \(C \). It is clear what we shall mean by an interval \(I \) in \(C \) and by the length \(l(I) \) of \(I \). Denote the distance of the real number \(\alpha \) to the closest integer by \(\| \alpha \| \). The image in \(C \) of the set of reals \(\xi \) satisfying \(\| \xi - \theta \| \leq \varepsilon \) with given \(\theta \) and \(0 < \varepsilon < 1/2 \) is an example of an interval of \(C \) of length \(2\varepsilon \).

Theorem 1. Let \(n \geq 1 \) and let \(P_1(q), \ldots, P_n(q) \) be nonconstant polynomials with integral coefficients. For each of the integers \(j = 1, \ldots, n \) let \(I_{j1} \supseteq I_{j2} \supseteq \cdots \) be a sequence of nested intervals in \(C \). Put \(\psi(q) = l(I_{1q}) \cdots l(I_{nq}) \) and

\[
\Psi(h) = \sum_{q=1}^{h} \psi(q).
\]

Put \(N(h;\alpha_1,\ldots,\alpha_n) \) for the number of integers \(q, 1 \leq q \leq h \), with

\[
\{\alpha_jP_j(q)\} \in I_{jq} \quad (j = 1, \ldots, n).
\]

Let \(\varepsilon > 0 \). Then

\[
N(h;\alpha_1,\ldots,\alpha_n) = \Psi(h) + O(\Psi(h)^{1/2+\varepsilon})
\]

for almost every \(n \)-tuple of real numbers \(\alpha_1, \ldots, \alpha_n \).

The theorem implies, for example, that the number of solutions of

\[
|ax - p - \theta| \leq q^{-1}
\]

in integers \(p \) and \(q, 1 \leq q \leq h \), is asymptotically equal to \(2 \log h \) for every \(\alpha \notin \sigma(\theta) \) where \(\sigma(\theta) \) is a set of measure zero. To see this we only have to put \(n = 1, P(q) = q \) and to define intervals \(I_q \) as the images of the sets \(\| \xi - \theta \| \leq q^{-1} \).

On the other hand, let \(P(q) = a_0q^d + \cdots + a_d \) be a polynomial of degree \(d > 0 \) with integral coefficients, let \(\mu \) be real, and let \(M(h;\alpha) \) be the number of solutions in integers \(p, q, 1 \leq q \leq h, \) of

\[
|\alpha - p/P(q)| \leq q^{-\mu}.
\]
Then $M(h; \alpha)$ is bounded for almost every α if $\mu > d + 1$; $M(h; \alpha) \sim 2 |a_0| \log h$ if $\mu = d + 1$; and $M(h; \alpha) \sim 2 |a_0| h^{d+1-\mu(d+1-\mu)^{-1}}$ for almost every α if $\mu < d + 1$.

To see this, we remark that for $\mu > d$ and large q, (1.4) is equivalent to $\|\alpha P(q)\| \leq |P(q)| q^{-\mu}$. Thus our interval I_q has length $\psi(q) = 2 |P(q)| q^{-\mu} = |2a_0 q^{d-\mu} + 2a_1 q^{d-\mu-1} + \cdots|$, and the theorem gives the result. For $\mu = d$, (1.4) becomes $|\alpha P(q) - p| \leq |a_0 + a_1 q^{-1} + \cdots|$, and $M(h; \alpha)$ becomes $2 |a_0| h$ plus (or minus) the number of solutions of $\|\alpha P(q)\| \leq |a_1 q^{-1} + \cdots|$ for $1 \leq q \leq h$, whence $M(h; \alpha) \sim 2 |a_0| h$ almost everywhere. Finally for $\mu < d$ our formula for $M(h; \alpha)$ is in fact true for every α. The reader should have no difficulty in proving this elementary result.

There can be at most countably many α's such that $\{\alpha P_j(q)\}$ is an endpoint of I_{jq} for some q, and hence we may assume I_{jq} to be closed ($j = 1, \ldots, n$; $q = 1, 2, \ldots$). The intersections $J_j = \bigcap_q I_{jq}$ ($j = 1, \ldots, n$) are then nonempty. The case where $0 \in J_j$ for each j is usually called the homogeneous case, the general case the inhomogeneous case.

Our theorem implies in particular that $N(h; \alpha_1, \ldots, \alpha_n)$ remains bounded almost everywhere if $\Psi(h)$ is bounded, while it will tend to infinity almost everywhere if $\Psi(h)$ tends to infinity. This had been proved by Khintchine [9] in the homogeneous case under the assumption that $P_j(q) = q$ ($j = 1, \ldots, n$) and that $q \psi(q)$ is decreasing. Szüsz [13] generalized Khintchine's result to the inhomogeneous case. Szüsz' method involves continued fractions and therefore applies only to the case $n = 1$. Before Szüsz, Cassels [2] had shown that Khintchine's conclusion is true for "almost every inhomogeneous case," that is, if (I_{1q}, \ldots, I_{nq}) is replaced by its translation by a vector $(\theta_1, \ldots, \theta_n)$ of reals mod 1 ($q = 1, 2, \ldots$), then the conclusion is true for almost every $\theta_1, \ldots, \theta_n$. Thus Cassel's result was "doubly metrical."

Erdös [5] proved for the homogeneous case with $n = 1$, $P(q) = q$, that $N(h; \alpha) \sim \Psi(h)$ almost everywhere, and the author [12] proved (1.3) in this case. Our generalization from the homogeneous to the inhomogeneous case is not trivial. We shall choose $\theta_j \in J_j$ ($j = 1, \ldots, n$) and use rational approximations to θ_j. The generalization from linear to general polynomials also causes some difficulty.

Le Veque [10] proved a general theorem where polynomials $P(q)$ are replaced by general sequences $a(q)$ which have to satisfy a certain condition. However, this condition is not satisfied for $a(q) = q$, and it is difficult to decide whether it is satisfied for nonlinear polynomials.

It would be possible to replace (1.2) by $\{\{\alpha_1 P_1(q)\}, \ldots, \{\alpha_n P_n(q)\}\} \in H_n$, thus replacing products of intervals $I_{1q} \times \cdots \times I_{nq}$ by somewhat more general sets H_q of $C \times \cdots \times C$.

(2) We use this opportunity to mention two errors in [12]: In Theorem 1 of [12] one has to assume that the functions $\psi_j(q)$ are bounded. Everywhere in §6 except in $\beta(Q, \theta)$, θ should be replaced by $\Theta = (\theta_1, \ldots, \theta_n)$.

W. M. SCHMIDT

[March]
In §10 we shall point out how one could prove a more general theorem where the expressions $a;P_j(q)$ are replaced by linear forms $\alpha_1 P_1(q_1) + \cdots + \alpha_m P_m(q_m)$. A special case of such a result is contained in Theorem 2 of [12].

Theorem 2. Let a sequence of positive integers $a_1(1) < a_2(2) < \cdots$ be given for $i = 1, \ldots, n$. Let θ be arbitrary but fixed, and put

$$
\sum_{h=1}^{n} \cdots \sum_{q_n=1}^{n} \left(q_1 \cdots q_n \right)^{\sum_{i=1}^{n} \alpha_i a_i(q_i) + \theta}^{-1}.
$$

Then one has for $\varepsilon > 0$ and almost every $\alpha_1, \ldots, \alpha_n$

(1.5)

$$
(\log h)^{n+1} \leq \sum_{h=1}^{n} \cdots \sum_{q_n=1}^{n} \left(q_1 \cdots q_n \right)^{\sum_{i=1}^{n} \alpha_i a_i(q_i) + \theta}^{-1}.
$$

Using Theorem 2, together with an n-dimensional generalization of a result of Erdős and Turan [7, Theorem 3], we shall easily deduce

Theorem 3. Assume the hypotheses of Theorem 1 to be satisfied, and assume we deal with the special case $P_j(q) = q$ ($j = 1, \ldots, n$) and $I_1 = I_{j_2} = \cdots$ ($j = 1, \ldots, n$). Write ψ for $\psi(1) = \psi(2) = \cdots$, and let $\varepsilon > 0$. Then

$$
N(h; \alpha_1, \ldots, \alpha_n) = h \psi + O(\log h)^{n+1} + \varepsilon
$$

for almost every $\alpha_1, \ldots, \alpha_n$.

Khintchine [8, §3], proved the surprisingly small error-term $O(\log h)^{1+\varepsilon}$ for $n = 1$, and hence our result is not best possible. However, Khintchine's method involves continued fractions and cannot easily be generalized to $n > 1$. It seems that Theorem 1 cannot much be improved for nonlinear polynomials. Behnke [1, Theorem XXV] showed for $n = 1$, $P(q) = q^2$ and $I_1 = I_2 = \cdots = I$, say, that the relation $D_\alpha(h) = \text{def sup}_I |N_h(q; \alpha) - 2h(I)| \leq \sqrt{h}$ is wrong for every α.

2. Notation and simplification. Throughout, $[\alpha]$ will the integral part of the real number α. U will denote the unit interval $0 \leq \xi < 1$.

We shall prove the case $n = 1$ of Theorem 1 in §§2–8. In §9 we shall point out the necessary changes for $n > 1$.

The set of α's in U where $\{\alpha P(q)\} \in I_q$ has measure $\psi(q)$. Assume now that $\Psi(h)$ is bounded. Given $\varepsilon > 0$ there is a q_0 such that $\sum_{q>q_0} \psi(q) < \varepsilon$, and the set of α's in U such that $\{\alpha P(q)\} \in I_q$ for some $q > q_0$ has measure $< \varepsilon$. Hence $N(h; \alpha)$ is bounded for almost every α.

From now on, we shall assume that $\Psi(h)$ tends to infinity.

Let $\theta \in I = \bigcap I_q$. Then each I_q is union of θ and of two intervals I_q^t and I_q^s, where I_q^t is of the type $0 < \{\theta - \xi\} \leq \psi^t(q)$, where I_q^s is of the type $0 < \{\xi - \theta\} \leq \psi^s(q)$, and where $\psi^t(q) + \psi^s(q) = \psi(q)$. ($I_q^t$ or I_q^s may be empty.) Now $\Psi^t(h)$, $\Psi^s(h)$, $N^t(h; \alpha)$, $N^s(h; \alpha)$ can be defined in the obvious way. One has $\Psi(h) = \Psi^t(h) + \Psi^s(h)$ and $N(h; \alpha) = N^t(h; \alpha) + N^s(h; \alpha)$ for almost every α. Hence it will suffice to prove the theorem for the case of intervals of type I^t and the case of intervals of type I^s.

Since the mapping $\xi \to -\xi$, $\theta \to -\theta$ transforms intervals of type I' into intervals of type I', we may restrict ourselves to intervals of type I'.

From now on, I_q will denote the interval $0 < \{\xi - \theta\} \leq \psi(q)$.

Replacing $P(q)$ by $-P(q)$ and α by $-\alpha$ if necessary, we may assume that $P(q) > 0$, $P'(q) > 0$ for $q > q_0$. Making a translation by q_0 we may even assume $P(q) > 0$, $P'(q) > 0$ for $q > 0$.

The introduction of a parameter k is essential for our proof. Put $\phi(k, x)$ for the number of integers y between 1 and x, $1 \leq y \leq x$, such that $\gcd(x, y) \leq k$. $\phi(1, x)$ is the well-known Euler ϕ-function.

Given $q \geq 1$ there are pairs of relatively prime integers a, b such that
\begin{equation}
1 \leq a \leq q^{1/2} \quad \text{and} \quad |b - \theta/a| < a^{-1} q^{-1/2}.
\end{equation}
This follows from Dirichlet's principle. For every integer $q \geq 1$ we pick integers $a = a(q)$, $b = b(q)$ with these properties. We define $S(k, q)$ as the set of integers p where
\begin{equation}
\gcd(pa(q) + b(q), P(q)) \leq k.
\end{equation}

The sets $S(k, q)$ have two important properties:

1. If $p \in S(k, q)$ and $p = p' \mod P(q)$, then $p' \in S(k, q)$.

2. The number $\phi^*(k, q)$ of integers of $S(k, q)$ in $1 \leq x \leq P(q)$ satisfies $\phi^*(k, q) \geq \phi(k, P(q))$.

To prove (2), put $P(q) = q_1 q_2$ where every prime factor of q_1 divides a and where q_2 and a are relatively prime. Now $\gcd(a, b) = 1$ yields $\gcd(pa + b, P(q)) = \gcd(pa + b, q_2)$ and $\phi^*(k, q) = q_1 \phi(k, q_2) \geq \phi(k, P(q))$.

We now put
\[
\beta(q, \alpha) = \begin{cases} 1 & \text{if } \alpha \in U \text{ and } \{\alpha\} \in I_q, \\ 0 & \text{otherwise,} \end{cases}
\]
\[
\gamma(q, \alpha) = \sum_p \beta(q, \alpha P(q) - p),
\]
\[
\gamma(k, q, \alpha) = \sum_{p \in S(k, q)} \beta(q, \alpha P(q) - p),
\]
\[
\Gamma(q) = \int_0^1 \gamma(q, \alpha) d\alpha,
\]
\[
\Gamma(k, q) = \int_0^1 \gamma(k, q, \alpha) d\alpha,
\]
\[
\Gamma(k, q, r) = \int_0^1 \gamma(k, q, \alpha) \gamma(k, r, \alpha) d\alpha,
\]
\[
A(k, q, r) = \Gamma(k, q, r) - \psi(q)\psi(r),
\]
It is easy to see that \(N(h; \alpha) = \sum_{q=1}^{h} \gamma(q, \alpha) \), and we define

\[
N(k; u, v; \alpha) = \sum_{q=u+1}^{v} \gamma(k, q, \alpha).
\]

One has

\[
\Gamma(q) = \sum_{p} \int_{0}^{1} \beta(q, P(q)x - p) dx = P(q) \int_{-\infty}^{\infty} \beta(q, P(q)x) dx = \psi(q),
\]

and similarly

\[
\Gamma(k, q) = \psi(q) \phi^*(k, q) P(q)^{-1}.
\]

Summing over \(q \) we find

\[
\int_{0}^{1} N(h; \alpha) dx = \Psi(h)
\]

and

\[
\int_{0}^{1} N(k; u, v; \alpha) dx = \sum_{q=u+1}^{v} \psi(q) \phi^*(k, q) P(q)^{-1}.
\]

3. Deduction of Theorem 1 from two propositions.

Proposition 1. Let \(\delta > 0 \). Then

\[
\sum_{q=1}^{h} (P(q) - \phi(k, P(q))) P(q)^{-1} \ll hk^{\delta-1} + h^\delta k^\delta.
\]

Proposition 2. For every \(\delta > 0 \)

\[
\sum_{q=1}^{h} \sum_{r=1}^{h} A(k, q, r) \ll \Psi^{1+\delta}(h) + \Psi(h)k^\delta.
\]

Remark. Here and later, the estimate \(\ll \) holds simultaneously in \(h \) and \(k \). That is, the constant implied by \(\ll \) depends only on \(\delta \).

We are going to show that Theorem 1 is a consequence of these two propositions. The propositions will be proved later.

Lemma 1. Let \(\omega_1(q), \omega_2(q), \omega_3(q) \) be positive bounded functions of positive integers \(q \), and put

\[
\Omega_i(h) = \sum_{q=1}^{h} \omega_i(q)
\]

\((i = 1, 2, 3)\).
Assume that \(\omega_1 \) and \(\omega_3 \) are decreasing, and that \(\Omega_2(r) \leq \Omega_3(r) \) for every \(r \). Then

\[
(3.3) \sum_{q=1}^{h} \omega_1(q) \omega_2(q) \ll \Omega_3(\lceil \Omega_1(h) \rceil).
\]

Proof. If \(\Omega_1 \) is bounded, then so is the sum in (3.3). Hence we assume \(\Omega_1 \) to be unbounded. Since \(\omega_1 \) is decreasing, and since \(\Omega_2 \leq \Omega_3 \), one finds by partial summation that \(\sum_{q=1}^{h} \omega_1(q) \omega_2(q) \leq \sum_{q=1}^{h} \omega_1(q) \omega_3(q) \).

To estimate the latter sum we may assume \(\omega_1(q) \leq 1 \). Put \(m_0 = 0 \) and for integral \(a > 0 \) put \(m_a \) for the largest \(m \) with \(\Omega_1(m) \leq a \). Then \(m_a \geq a \) and \(\omega_1(m_a + 1) + \cdots + \omega_1(m_a + 1) \leq 2 \). Putting \(b = \lceil \Omega_1(h) \rceil \) we obtain

\[
\sum_{q=1}^{h} \omega_1(q) \omega_3(q) \leq \sum_{a=0}^{b} (\omega_1(m_a + 1) \omega_3(m_a + 1) + \cdots + \omega_1(m_a + 1) \omega_3(m_a + 1)) \leq 2 \sum_{a=0}^{b} \omega_3(m_a + 1) \leq 2 \sum_{a=1}^{b+1} \omega_3(a) = 2 \Omega_3(\lceil \Omega_1(h) \rceil + 1).
\]

Denote by \(J_r \) the set of intervals \((u, t], 0 \leq u = t \cdot 2^s < v = (t + 1)2^s \leq 2^r \) where \(r, s, t \) are non-negative integers. Every interval \((0, w] \) where \(w \) is integral and \(w \leq 2^r \) is union of not more than \(\max(1, r) \) intervals of \(J_r \). Given an integer \(u > 0 \) put \(n_u \) for some integer satisfying \(\lceil \Psi(n_u) \rceil = u \), and put \(n_0 = 0 \). Since \(\psi(q) \leq 1 \) and since \(\Psi(h) \) tends to infinity, such an \(n_u \) will always exist. Put \(h_r = n_{2r} \).

For the remainder of this section, \(k \) and \(r \) will be connected by

\[
(3.4) k = 2^r.
\]

Lemma 2. Let \(\delta > 0 \). Then

\[
(3.5) 0 \leq \int_{0}^{1} (N(h_r, x) - N(k; 0, h_r, x)) dx \ll 2^{r+6}
\]

and

\[
(3.6) \sum_{(u, v) \in J_r} \int_{0}^{1} (N(k; n_u, n_v, x) - \Psi(n_u, n_v))^2 dx \ll 2^{r+r+6}.
\]

Proof. Formulae (2.5) and (2.6) yield

\[
S_r = \int_{0}^{1} (N(h_r, x) - N(k; 0, h_r, x)) dx = \sum_{q=1}^{h_r} \psi(q)(P(q) - \phi^*(k, q)) P(q)^{-1}
\]

\[
\leq \sum_{q=1}^{h_r} \psi(q)(P(q) - \phi(k, P(q))) P(q)^{-1}.
\]

We now put

\[
\omega_1(q) = \psi(q), \quad \omega_2(q) = (P(q) - \phi(k, P(q))) P(q)^{-1}, \quad \omega_3(q) = c(k^{q-1} + q^{k-1}k^q).
\]

Proposition 1 shows that Lemma 1 is applicable if \(c > 0 \) is chosen large enough. Under our conditions we actually obtain the bound \(2 \Omega_3(\lceil \Omega_1(h) \rceil) + 1 \). Hence
This is true for every $\delta > 0$, and hence (3.5) is proved.

$$N(k; u, v; \alpha) - \Psi(u, v) = \sum_{q = u + 1}^{v} (\gamma(k, q, \alpha) - \psi(q)).$$

Hence by (2.3), (2.4) and the estimate just derived,

$$\int_{0}^{1} (N(k; u, v; \alpha) - \Psi(u, v))^{2} \, d\alpha$$

$$= \sum_{q = u + 1}^{v} \sum_{q' = u + 1}^{v} (\Gamma(k, q, q') - \Gamma(k, q) \psi(q') - \Gamma(k, q') \psi(q) + \psi(q) \psi(q'))$$

$$= \sum_{q = u + 1}^{v} \sum_{q' = u + 1}^{v} A(k, q, q') + 2 \sum_{q = u + 1}^{v} \sum_{q' = u + 1}^{v} \psi(q) \psi(q') (P(q) - \phi^{*}(k, q)) P(q)^{-1}$$

$$\ll \sum_{q = u + 1}^{v} \sum_{q' = u + 1}^{v} A(k, q, q') + \sum_{q' = u + 1}^{v} \psi(q')^{2} r^{\delta}.$$
Lemma 2 implies \(\mu_r \ll r^{-2} \). Every interval \((0, w]\), \(w \leq 2^r \), is union of at most max \((1, r)\) intervals of \(J_r \), hence \((0, n_w]\) is union of at most max \((1, r)\) intervals \((n_u, n_v]\) where \((u, v]\) \(\in J_r \). Thus \(N(k; 0, n_w; x) - \Psi(n_w) = \sum (N(k; n_u, n_v; x) - \Psi(n_u, n_v)) \), where the sum is over at most \(r + 1\) pairs \((u, v]\) \(\in J_r \). This relation together with (3.8) and Cauchy’s inequality gives for \(\alpha \in U \), \(\alpha \notin \sigma_r \)

\[
(N(k; 0, n_w; x) - \Psi(n_w))^2 \leq r^2(r + 1)^2 \frac{2^{-2r + \delta}}{x^2}.
\]

(3.9)

Lemma 3 is a consequence of (3.7) and (3.9).

Proof of Theorem 1. Since \(\sum r^{-2} \) is convergent, there exists for almost every \(\alpha \in U \) an \(r_0 = r_0(\alpha) \) such that \(\alpha \notin \sigma_r \) for \(r \geq r_0 \). Assume \(\alpha \) has such an \(r_0 \), and assume \(w > 2^{r_0} \). Choose \(r \) such that \(2^{r - 1} \leq w < 2^r \). Then \(r > r_0 \), \(\alpha \notin \sigma_r \), and Lemma 3 implies

\[
N(n_w; \alpha) = \Psi(n_w) + O(r^2 2^{r/2 + \delta})
\]

(3.10)

\[
= \Psi(n_w) + O\left(\frac{w^{1/2 + \delta} \log^2 w}{r^2}\right)
\]

\[
= \Psi(n_w) + O\left(\frac{w^{1/2 + \delta} \log^2 \Psi(n_w)}{r^2}\right).
\]

Since \(\Psi(n_{w+1}) = \Psi(n_w) + O(1) \), (3.10) is true for arbitrary integers \(h \) and not only the \(n_w \)'s. And since \(\delta > 0 \) was arbitrary, we find

\[
N(h; \alpha) = \Psi(h) + O(\Psi(h)^{1/2 + \delta})
\]

for almost every \(\alpha \in U \). Hence (1.3) is true for almost every \(\alpha \).

4. The number of solutions of \(P(x) = 0 \) \text{ (mod} \ d) \. Put \(D(q) \) for the number of positive divisors of \(q \). As is well known,

\[
D(q) \ll q^\delta
\]

(4.1)

for every \(\delta > 0 \). Put \(z(d) = z_P(d) \) for the number of solutions of \(P(x) = 0 \) \text{ (mod} \ d) \. Here, as always, \(P(x) \) is a nonconstant polynomial with integral coefficients. Define the discriminant \(\Delta \) of \(P(x) \) in the usual way if \(P(x) \) is nonlinear, and put \(\Delta = \alpha_0 \) if \(P(x) = a_0x + a_1 \).

Lemmas 4. Let \(P(x) \) be a polynomial of degree \(f \) and with discriminant \(\Delta \neq 0 \). Then \(z_P(p^k) \leq f \Delta^2 \) for every prime-power \(p^k \).

Proof. For linear \(P(x) \) it is well known that \(z(m) \leq \text{g.c.d.}(m, \Delta) \leq \Delta \leq f \Delta^2 \). The case where \(P(x) \) is nonlinear and primitive, that is, where the coefficients of \(P(x) \) are relatively prime, is Theorem 54 of [11]. A proof can be found there. In the general nonlinear case one has \(P(x) = cQ(x) \) with primitive \(Q(x) \), whence \(z_P(p^k) \leq cz_Q(p^k) \leq cf \Delta^2 Q \leq f \Delta^2 p \).

Corollary. Let \(P(x) \) be a polynomial with no multiple factors. Let \(\delta > 0 \). Then
Proof. The set \(\tau \) of prime-powers \(p^k \) such that \(p^{k\alpha} \equiv \alpha^2 \mod \beta \) is finite. For every \(d \),
\[
z(d)d^{-\delta} \leq \prod_{p \in \tau} z(p^\alpha)p^{-k\beta} \ll 1.
\]

Given an integer \(g > 0 \) we define a function \(\xi(d) \) of positive integers \(d \) as follows:
\(\xi(d) \) is multiplicative, and \(\xi(p^{x+y}) = p^{x+1} \) if \(p \) is a prime and \(1 \leq y \leq g \). Our function has the property that \(d \mid m^\xi \) implies \(\xi(d) \mid m \).

Lemma 5. Let \(P(x) \) be a nonconstant polynomial, \(g \) a positive integer and \(s > 1 \). Then the two sums
\[
(4.3) \sum_{d=1}^{\infty} z_p(d)d^{-s}
\]
and
\[
(4.4) \sum_{d=1}^{\infty} (\xi(d))^{-s}
\]
are convergent.

Proof. There is an integer \(m \) and a polynomial \(Q(x) \) without multiple factors such that \(P(x) \mid Q(x)^m \). Now \(P(x) \equiv 0 \mod d \) implies \(Q(x) \equiv 0 \mod (d) \), and hence
\[
z_p(d)d^{-s} \leq z_Q(m(d))(m(d))^{-1}d^{-s} = z_Q(p^s(x+y))p^{(1-s)(mx+y)-x-1}
\]
\[
\leq f\Delta^2 p^{-x(m(s-1)+1)-y(s-1)-1} \leq f\Delta^2 p^{-s-x-s}.
\]
This implies
\[
\sum_{e=1}^{\infty} z_p(p^e)p^{-es} \leq mf\Delta^2 p^{-s} \sum_{x=0}^{\infty} p^{-xs} \leq c_xp^{-s}.
\]

Since the product \(\prod_{p}(1 + cp^{-s}) \) over all primes \(p \) is convergent, the convergence of (4.3) follows.

The convergence of (4.4) is proved similarly.

5. Proof of Proposition 1. The Euler \(\phi \)-function \(\phi(x) = \phi(1, x) \) can be expressed \(\phi(x) = x \sum_{y \mid x} \mu(y)y^{-1} \), where \(\mu(y) \) is the Moebius function. Now
\[
\phi(k, P(q)) = \sum_{x \leq k; x \mid P(q)} \phi(P(q)x^{-1}) = \sum_{x \leq k; x \mid P(q)} P(q)x^{-1} \sum_{y \mid P(q)x^{-1}} \mu(y)y^{-1},
\]
hence
\[
T_{k,h} = \sum_{q=1}^{h} \phi(k, P(q))P(q)^{-1} = \sum_{q=1}^{h} \sum_{x \leq k; x \mid P(q)} x^{-1} \sum_{y \mid P(q)x^{-1}} \mu(y)y^{-1},
\]
\[
= \sum_{x \leq k; x \mid P(h)} x^{-1} \sum_{y \mid P(h)x^{-1}} \mu(y)y^{-1} \sum_{q \mid h \cdot xy \mid P(q)} 1.
\]
The number of \(q \leq h \) such that \(xy \mid P(q) \) equals \(hz(xy)(xy)^{-1} + O(z(xy)) \). Therefore

\[
T_{k,h} = h \sum_{x \leq k; x \leq P(h)} \sum_{y \leq P(h)x^{-1}} z(xy)(xy)^{-2} \mu(y) + O\left(\sum_{x \leq k} \sum_{y \leq P(h)} z(xy)(xy)^{-1} \right)
= hU_{k,h} + O(V_{k,h}),
\]
say. Putting \(xy = w \) and using (4.1) with \(\delta = \varepsilon/2 \) and Lemma 5 with \(s = 1 + \varepsilon/2 \), \(\varepsilon > 0 \), we find

\[
U_{k,h} = \sum_{w \leq k; w \leq P(h)} z(w)w^{-2} \sum_{y \mid w} \mu(y) + O\left(\sum_{w > k} z(w)w^{-2}D(w) \right) = 1 + O(k^{\varepsilon-1}).
\]

Similarly,

\[
V_{k,h} \leq \sum_{w \leq P(h)k} z(w)w^{-1}D(w) \leq P(h)^{s}k^{\varepsilon} \sum_{w = 1}^{\infty} (z(w)w^{-1-\varepsilon/2}D(w)w^{-\varepsilon/2}) \leq P(h)^{s}k^{\varepsilon}.
\]

Combining our formulae and observing that \(\varepsilon > 0 \) was arbitrary we obtain

\[
T_{k,h} = h + O(hk^{\varepsilon-1} + h^{s}k^{\varepsilon}),
\]
thereby proving the proposition.

We use the remainder of this section to prove four related lemmas.

Lemma 6. Let \(P(x) \) be a polynomial of degree \(f > 1 \), and let \(\varepsilon > 0 \). Then

\[
W_{h} = \sum_{q = 1}^{h} \frac{q - 1}{P(q)} \sum_{d \mid P(q); d < q^{1-\varepsilon}} d \sum_{r \leq q; d \mid P(r)} 1 \ll h.
\]

Proof. Choose \(\delta > 0 \) so small that \(2\delta f \leq \varepsilon(1 - f^{-1}) \).

There is an integer \(g \geq 1 \) and a polynomial \(Q(x) \) with no multiple factors such that \(P(x) \mid Q(x)^{f} \). We may choose \(g \leq f \). Now \(d \mid P(r) \) implies \(\delta(d) \mid Q(r) \), hence the number of \(r \leq q \) with \(d \mid P(r) \) is not larger than \((q(\delta(d))^{-1} + 1)z(\delta(d)) \) and therefore by the corollary to Lemma 4 not larger than

\[
\ll (q(\delta(d))^{-1} + 1) \leq (qd^{-1/\delta} + 1) \delta^{\varepsilon} \leq (qd^{-1/\delta} + 1) \delta^{\varepsilon}.
\]

Using \(D(P(q)) \ll q^{\delta^{\varepsilon}} \) we obtain

\[
W_{h} \ll \sum_{q = 1}^{h} q^{-f} \sum_{d \mid P(q); d < q^{f-\varepsilon}} (qd^{1-1/f+\delta} + d^{1+\delta})
\ll \sum_{q = 1}^{h} D(P(q))(q^{-f+1+(1-1/f+\delta)(f-\varepsilon)} + q^{-f+(1+\delta)(f-\varepsilon)}) \ll q^{2\delta f-\varepsilon(1-1/f)} \ll h.
\]

Lemma 7. Let \(P(x) \) be arbitrary and \(\delta > 0 \). Then

\[
\sum_{q = 1}^{h} \sum_{d \mid P(q)} d^{-\delta} \ll h.
\]

Proof. The part of the sum where \(d \geq q \) is not larger than
The part of the sum where $d < q$ is estimated by

$$\sum_{d=1}^{h} d^{-\delta} \sum_{d < q \leq h : d \mid P(q)} 1 \leq \sum_{d=1}^{h} d^{-\delta} h d^{-1} z(d) \leq h \sum_{d=1}^{\infty} z(d) d^{-1-\delta} \ll h.$$

Lemma 8. Write $D_k(x)$ for the number of positive divisors of x which are not larger than k, and let $\delta > 0$. Then

$$\sum_{q=1}^{h} D_k(P(q)) \ll hk^\delta.$$

Proof. We break the sum into two parts, $\sum_{q=1}^{\min(k,h)} + \sum_{k < q \leq h}$, where the second part may be empty. For q contributing to the first part of the sum, $D_k(P(q)) \leq D(P(q)) \ll k^\delta$, and we obtain the desired estimate. The second part equals

$$\sum_{k<q\leq h} D_k(P(q)) = \sum_{d \leq k} \sum_{k < q \leq h : d \mid P(q)} 1 \leq \sum_{d \leq k} h d^{-1} z(d) \ll \sum_{d=1}^{\infty} z(d) d^{-1-\delta} \ll hk^\delta.$$

Lemma 9. Write $D(x,y)$ for the number of common positive divisors of integers $x, y \neq 0$. Let $P_1(x), P_2(x)$ be polynomials with integral coefficients such that $P_1(x) \neq 0$ for $x > 0$. Then

$$(5.1) \quad X_{h_1,h_2} = \sum_{q_1=1}^{h_1} \sum_{q_2=1}^{h_2} D(P_1(q_1), P_2(q_2)) \ll h_1 h_2.$$

This estimate holds simultaneously in h_1, h_2.

Proof. It is sufficient to prove (5.1) with $P_1(x), P_2(x)$ both replaced by the product $P_1(x)P_2(x)$. We may therefore assume $P_1(x) = P_2(x) = P(x)$, say. There is an integer $g > 0$ and a polynomial $Q(x)$ without multiple factors such that $P(x) \mid Q(x)^g$.

Let σ be the set of positive divisors of $P(x)$ where $1 \leq x \leq \min(h_1, h_2)$. The number of elements of σ is $\ll (\min(h_1, h_2))^{1+\delta}$ for every $\delta > 0$.

$$X_{h_1,h_2} \ll \sum_{d \in \sigma} \left(\sum_{q_1 \leq h_1 : d \mid P(q_1)} 1 \right) \left(\sum_{q_2 \leq h_2 : d \mid P(q_2)} 1 \right) \ll \sum_{d \in \sigma} \left(\sum_{q_1 \leq h_1 : \xi(d) \mid Q(q_1)} 1 \right) \left(\sum_{q_2 \leq h_2 : \xi(d) \mid Q(q_2)} 1 \right) \ll \sum_{d \in \sigma} (h_1(\xi(d))^{-1} + 1)(h_2(\xi(d))^{-1} + 1)z_0^{\xi(d)} \ll \sum_{d \in \sigma} (h_1(\xi(d))^{-1} + 1)(h_2(\xi(d))^{-1} + 1)(\xi(d))^{2\delta}.$$
Using the distributive law we can break this sum into four parts, and Lemma 5 implies that each part is $\ll h_1 h_2$.

6. Estimates for $A(k, q, r)$. In what follows, $d^* = d^*(q, r)$ will mean g.c.d. $(P(q), P(r))$. Put $B(k, q, r)$ for the number of pairs of integers $p, s, p \in S(k, q), s \in S(k, r), 0 \leq p < P(q)$, such that

$$|P(q)(s + \theta) - P(r)(p + \theta)| < \min (d^*, P(q)\psi(r)).$$

Lemma 10. For $r \leq q$, $A(k, q, r) \leq \psi(q) P(q)^{-1} B(k, q, r)$.

Proof. All the expressions $P(q)s - P(r)p$ are multiples of d^*. Write $C(l, k, q, r)$ for the number of pairs $p, s, p \in S(k, q), s \in S(k, r), 0 \leq p < P(q)$ such that $P(q)s - P(r)p = ld^*$. The congruence $P(r)p = ld^*$ (mod $P(q)$) has d^* solutions in p, and therefore

$$C(l, k, q, r) \leq d^*.$$

By definition,

$$\Gamma(k, q, r) = \sum_{p \in S(k,q)} \sum_{s \in S(k,r)} \int_0^1 \beta(q, P(q)\alpha - p) \beta(r, P(r)\alpha - s) d\alpha.$$

We now make the substitution $P(q)\alpha' = P(q)\alpha - p - \theta$. Then $P(r)\alpha - s = P(r)\alpha' + \theta - (P(q)(s + \theta) - P(r)(p + \theta)) P(q)^{-1}$ and

$$\Gamma(k, q, r)$$

$$= \sum_{p \in S(k,q)} \sum_{s \in S(k,r)} \int_{-(p+\theta)}^{1-(p+\theta)} \beta(q, P(q)\alpha' + \theta) \beta(r, P(r)\alpha' + \theta$$

$$- (P(q)(s + \theta) - P(r)(p + \theta)) P(q)^{-1}) d\alpha'$$

$$= \sum_l C(l, k, q, r)$$

$$\cdot \int_{-\infty}^{\infty} \beta(q, P(q)\alpha + \theta) \beta(r, P(r)\alpha + \theta - ld^* + (P(q) - P(r))\theta) P(q)^{-1}) d\alpha$$

$$= \sum_l C(l, k, q, r) D(q, r, ld^* + (P(q) - P(r))\theta),$$

where $D(q, r, t) = \int_{-\infty}^{\infty} \beta(q, P(q)\alpha + \theta) \beta(r, P(r)\alpha + \theta - tP(q)^{-1}) d\alpha$.

For the following estimates we recall that $\beta(q, \xi + \theta)$ is the characteristic function of $0 < \xi \leq \psi(q)$. We note

$$\int_{-\infty}^{\infty} D(q, r, t) dt = \psi(q) \psi(r)$$

as well as $0 \leq D(q, r, t) \leq \psi(q) P(q)^{-1}$ and the fact that D is zero outside the interval $(-P(q)\psi(r), P(r)\psi(q))$, hence in particular if $|t| \geq P(q)\psi(r)$. Furthermore, $D(q, r, t)$ is decreasing for $t > 0$, increasing for $t < 0$. Hence
\[
\Gamma(k, q, r) \leq d^* \sum_{l: |l|d^* + (p(q) - P(r)) \theta| \geq d^*} D(q, r, ld^* + (p(q) - P(r)) \theta) + \sum_{l: |l|d^* + (p(q) - P(r)) \theta| < d^*} C(l, k, q, r) D(q, r, ld^* + (p(q) - P(r)) \theta)
\]

(6.1)

\[
\leq d^* \int_{-\infty}^{\infty} D(q, r, \lambda d^* + (p(q) - P(r)) \theta) d\lambda + \psi(q) P(q)^{-1} B(k, q, r)
\]

= \psi(q) \psi(r) + \psi(q) P(q)^{-1} B(k, q, r),

and the lemma follows.

Put \(E_\delta(k, q, r) \) for the number of \(p \in S(k, q), s \in S(k, r), 0 \leq p < P(q) \) with \(|P(q)(s + \theta) - P(r)(p + \theta)| < P(q)q^{-1} d^*\).

Lemma 11. Let \(P(q) \) be a polynomial of degree \(f > 0 \), and let \(\varepsilon = 1 \) if \(f = 1 \), \(\varepsilon > 0 \) if \(f > 1 \). Let \(\delta > 0 \). Then

\[
\sum_{q=1}^{h} \sum_{r=1}^{q} \psi(q) P(q)^{-1} B(k, q, r) \leq \Psi(h)^{1+\delta}
\]

\[
+ \sum_{q=1}^{h} \sum_{r \leq q \text{ with } d^* < q^{f-\varepsilon}} \psi(q) P(q)^{-1} E_\delta(k, q, r).
\]

Proof. Choose \(\delta_1 > 0 \), \(\delta_2 > 0 \) such that \(\delta_1 + 1/\delta_2 < \delta \). We shall use the easily proved estimate

(6.3)

\[
B(k, q, r) \leq 2d^*.
\]

We consider four parts \(\Sigma_1, \Sigma_2, \Sigma_3, \Sigma_4 \) of the sum we want to estimate.

\(\Sigma_1: d^* < q^{f-\varepsilon} \). We may assume \(f > 1 \), since \(d^* < q^{f-\varepsilon} \) is otherwise impossible.

\[
\Sigma_1 \leq 2 \sum_{q=1}^{h} \sum_{r \leq q \text{ with } d^* < q^{f-\varepsilon}} \psi(q) P(q)^{-1} d^*
\]

\[
\leq 2 \sum_{q=1}^{h} \psi(q) P(q)^{-1} \sum_{d|P(q); d < q^{f-\varepsilon}} d \sum_{r \leq q \text{ with } d|P(r)} 1.
\]

Using Lemma 6 and partial summation we obtain \(\Sigma_1 \leq \Psi(h) \).

\(\Sigma_2: d^* < (q/r)^{1/\delta_1} \).

\[
\sum_{r < qd^* - \delta_1} B(k, q, r) \leq \sum_{d|P(q)} \sum_{r < qd^* - \delta_1; d|P(r)} d \leq \sum_{d|P(q)} \sum_{x \leq P(qd^* - \delta_1); d|x} 1
\]

\[
\leq \sum_{d|P(q)} dP(q)d^{-1-f\delta_1},
\]

\[
\Sigma_2 \leq \sum_{q=1}^{h} \psi(q) \sum_{d|P(q)} d^{-f\delta_1} \leq \Psi(h)
\]

by Lemma 7 and partial summation.
\[\sum_{3} : d^* < \Psi(q)^{\frac{3}{2}}. \]

\[\sum_{r < q \text{ with } d^* < \Psi(q)} \delta_2 B(k, q, r) \leq \sum_{d | P(q) : d < \Psi(q)^{\frac{3}{2}}} \sum_{r \leq q : d | P(r)} d \]

\[\leq \sum_{d | P(q) : d < \Psi(q)^{\frac{3}{2}}} d \sum_{x \leq q : d | x} 1 \]

\[\leq \sum_{d | P(q) : d < \Psi(q)^{\frac{3}{2}}} d P(q) d^{-1} = P(q) \sum_{d | P(q) : d < \Psi(q)^{\frac{3}{2}}} 1. \]

Putting \(l = \Psi(h)^{\frac{3}{2}} \) we obtain

\[\sum_{3} \leq \sum_{q = 1}^{h} \psi(q) D_1(P(q)). \]

Lemma 8 together with partial summation gives \(\sum_{3} \leq \Psi(h)^{1 + \frac{3}{2}}. \)

\[\sum_{4} : d^* \geq q^{f - \varepsilon}, \ d^* \geq (q/r)^{1/\delta_1}, \ d^* \geq \Psi(q)^{\delta_2}. \]

Under these conditions, \(P(q) \psi(r) \leq P(q) \psi(qd^* \delta_1)^{(2)} = P(q) q^{-1} d^* \delta_1 q d^* - \delta_1 \psi(qd^* - \delta_1) \leq P(q) q^{-1} d^* \delta_1 \Psi(q) \leq P(q) q^{-1} d^* \delta_1^{1 + 1/\delta_2} \leq P(q) q^{-1} d^* \delta_1 \); therefore \(B(k, q, r) \leq E_4(k, q, r). \)

Obviously, \(\sum_{4} \) is bounded by the right-hand sum of (6.2).

7. Proof of Proposition 2 for nonlinear polynomials. In the case of polynomials of degree \(f > 1 \) we may use Lemma 6, which ceases to be true if \(f = 1 \). On the other hand, much of the preceding discussion could be simplified for \(f = 1 \).

We assume now \(f > 1 \).

We define \((x, y; k) \) by

\[
(x, y; k) = \begin{cases}
\text{g.c.d.} (x, y) \text{ if this divisor is } \geq xk^{-1}, \\
0 \text{ otherwise.}
\end{cases}
\]

Lemma 12. Assume that \(\delta > 0 \) is so small that \(f - 1/2 < (f - 1/4)(1 - \delta) \). Further assume \(q > q_0(P, \delta), \ r \leq q, \ d^* = \text{g.c.d.} (P(q), P(r)) \geq q^{f - 1/4} \). Then

(7.1) \[E_4(k, q, r) \leq (P(q), P(r); k). \]

Proof. Put \(c = |a_0| + \cdots + |a_f| \), where the \(a_i \)'s are the coefficients of \(P(q) \).

Choose \(q_0 \) so large that the two inequalities

\[q_0^{1/4} > 2c, \quad 2cq_0^{f - 1/2} < q_0^{(f - 1/4)(1 - \delta)} \]

hold, and let \(q \geq q_0 \).

The numbers \(a = a(q), \ b = b(q) \) satisfy

\[\theta = b/a + R, \quad |R| < a^{-1} q^{-1/2}, \quad a \leq q^{1/2} \]

and

(7.2) \[2caq^{f - 1} \leq 2cq^{f - 1/2} < q^{(f - 1/4)(1 - \delta)} \leq d^{*1 - \delta}. \]

(3) For \(0 \leq a < 1 \) define \(\psi(n - a) = \psi(n) \).
$E_d(k, q, r)$ is bounded by the number of pairs p, s, $0 \leq p < P(q)$, $p \in S(k, q)$ satisfying

$$|P(q)s - P(r)p + (P(q) - P(r))(b/a + R)| < P(q)q^{-1}d^{*\delta}.$$

This equation together with (7.2) yields

$$|P(q)(s + b/a) - P(r)(p + b/a)| < P(q)q^{-1}d^{*\delta} + |P(q) - P(r)||R|$$

(7.3)

$$< d^{*2} + g^{*1/2}a = d^{*}/a.$$

The left-hand side of (7.3) is an integral multiple of d^{*}/a, hence it must be zero.

(7.4)

$P(q)(as + b) = P(r)(ap + b)$.

It remains to estimate the number of solutions of (7.4) in pairs p, s, $0 \leq p < P(q)$, $p \in S(k, q)$. Putting $P(q) = d^*P(q)^*$ we find that (7.4) implies

$$ap + b = 0 (mod P(q)^*)$$

Since a and b are relatively prime, this congruence has at most one solution in p modulo $P(q)^*$, hence at most d^* solutions in $0 \leq p < P(q)$. On the other hand, the congruence gives $g.c.d. (ap + b, P(q)) \geq P(q)* = P(q)d^{*-1}$, while $p \in S(k, q)$ implies $g.c.d. (ap + b, P(q)) \leq k$. Thus $E_4(k, q, r)$ is zero unless $d^* \geq P(q)k^{-1}$.

Lemma 12 is proved.

Proof of Proposition 2 ($f > 1$). We may assume that $\delta > 0$ is so small that $f - 1/2 < (f - 1/4)(1 - \delta)$. Combining Lemma 10, Lemma 11 with $\epsilon = 1/4$ and Lemma 12, we obtain

$$\sum_{q=1}^{h} \sum_{r=1}^{h} A(k, q, r) \ll \Psi(h)^{1+\delta} + \sum_{q=1}^{h} \sum_{r=1}^{q} \psi(q) P(q)^{-1}(P(q), P(r); k).$$

Using Lemma 8 and partial summation we find

$$\sum_{q=1}^{h} \sum_{r=1}^{q} P(q)^{-1}(P(q), P(r); k) \leq \sum_{q=1}^{h} P(q)^{-1} \sum_{d|P(q); d \leq P(q)k^{-1}} d \sum_{r=1}^{1} dP(q)d^{-1}$$

$$= \sum_{q=1}^{h} dP(q) \ll h k^{\delta}$$

and

$$\sum_{q=1}^{h} \sum_{r=1}^{q} \psi(q) P(q)^{-1}(P(q), P(r); k) \ll \Psi(h)k^{\delta}.$$
Lemma 13. Let \(P(x) \) be a linear polynomial, let \(0 < \delta < 1/4 \), \(q \geq 1 \) and \(d^* \mid P(q) \). Then

\[
\sum_{r \leq q: (P(q), P(r)) = d^*} E_\delta(k, q, r) \ll q d^*^{-1/4} + d^* + q^{1/2} + \begin{cases} q & \text{if } d^* \mid P(q)k^{-1}, \\ 0 & \text{otherwise.} \end{cases}
\]

Remark. The constant involved in the symbol \(\ll \) depends on \(P(x) \) only.

Proof. Put \(c = \left| a_0 \right| + \left| a_1 \right| \) where \(P(x) = a_0x + a_1 \). The relation \(|P(q)s - P(r)p + (P(q) - P(r))\theta| < P(q)q^{-1}d^* \delta \leq cd^*^{1/4} \) in the definition of \(E_\delta(k, q, r) \) implies \(\| (P(q) - P(r))d^*^{-1}\theta \| < cd^*^{-3/4} \). Given \(r \) such that the last inequality holds, there are at most \(2c \) integers \(l \) with

\[
\|(P(q) - P(r))d^*^{-1}\theta - l\| < cd^*^{-3/4}.
\]

Given \(r \) and \(l \), \(P(q)s - P(r)p = ld^* \) has at most \(d^* \) solutions in \(p \), \(0 \leq p < P(q) \). Putting

\[
F(q, r) = \begin{cases} 1 & \text{if } \| (P(q) - P(r))d^*^{-1}\theta \| < cd^*^{-3/4}, \\ 0 & \text{otherwise,} \end{cases}
\]

we thus find

\[
E_\delta(k, q, r) \ll d^*F(q, r).
\]

Assume now that \(r \) runs through those values between 1 and \(q \) where \(d^* \mid P(r) \). Then \(P(q) - P(r) \) runs through some or all of the numbers 0, \(d^* \), \(2d^* \), ..., \([a_0q/d^*]d^* = q^*d^* \). Thus if we put \(G(q, d^*) \) for the number of integers \(x \) in \(0 \leq x \leq q^* \) satisfying

\[
\| x\theta \| < cd^*^{-3/4},
\]

then

\[
\sum_{r \leq q: d^* \mid P(r)} F(q, r) \leq G(q, d^*).
\]

We now distinguish three cases: \(A \), \(B \) and \(C \).

A. \(2ca(q) \leq d^*^{1/4} \). How often does (8.3) hold when \(x \) runs through an interval \(m < x \leq m + a(q) \)? Putting \(\theta = b/a + R \) and \(x = m + y \), the inequality becomes \(\| m\theta + yb/a + yR \| < cd^*^{-3/4} \) and this implies \(\| m\theta + yb/a \| < cd^*^{-3/4} + aR < cd^*^{-3/4} + q^{-1/2} \). The number of solutions of (8.3) for \(x \) in an interval of length \(a \) is therefore \(\leq (d^*^{-3/4} + q^{-1/2})a + 1 \leq d^*^{-3/4}a + 1 \). Hence

\[
G(q, d^*) \ll (d^*^{-3/4}a + 1)(qa^{-1} + 1) \ll q^*d^*^{-1/4} + q^{1/2}d^*^{-3/4} + 1,
\]

and

\[
d^*(G(q, d^*)) \ll qad^*^{-1/4} + d^*.
\]

(8.1) now follows from (8.2), (8.4) and the last inequality.
B. $2ca(q) < d*^{1/4}$, $2aq* | R | \geq 1$. Putting $\theta = b/a + R$ again, we rewrite (8.3) as $\| xb/a + xR \| < cd*^{-3/4}$. This implies that

\begin{equation}
| m/a + xR | < cd*^{-3/4}
\end{equation}

for some integer m. For fixed m the number of solutions in x of (8.5) is at most $2cd*^{-3/4} | R |^{-1} + 1$. On the other hand, $x \leq q*$, whence $| m | \leq cad*^{-3/4} + aq* | R |$. Thus

$$G(q, d*) \leq (d*^{-3/4} | R |^{-1} + 1)(ad*^{-3/4} + aq* | R | + 1)$$

$$\leq a^2q*d*^{-3/2} + ad*^{-3/4} + aq*d*^{-3/4} + q*q^{-1/2} + 2aq*d*^{-3/4} + 1$$

$$\leq a^2q*d*^{-3/4} + q*q^{-1/2} + 1$$

and

$$d*G(q, d*) \leq qd*^{-1/4} + q^{1/2} + d*.$$

C. $2ca(q) < d*^{1/4}, 2aq* | R | < 1$. $E_\delta(k, q, r)$ is bounded by the number of solutions in integers $p, s, 0 \leq p < P(q)$, $p \in S(k, q)$, of

$$| P(q)(s + b/a) - P(r)(p + b/a) + (P(q) - P(r))R | < cd*^{1/4}.$$

Now for $r \leq q$, $d* | P(r)$, one has $| P(q) - P(r) | \leq q*d*$, and we obtain the inequality

$$| P(q)(s + b/a) - P(r)(p + b/a) | \leq cd*^{1/4} + q*d* | R | < d*/2a + d*/2a = d*/a.$$

Just as in the proof of Lemma 12 we may conclude that (7.4) holds, and we obtain (7.1). The number of $r \leq q$ with $d* | P(r)$ is $\leq qd*^{-1}$, and therefore

$$\sum_{r \leq q, d* \mid P(r)} E_\delta(k, q, r) \leq \begin{cases} q & \text{if } d* \geq P(q)k^{-1}, \\ 0 & \text{otherwise}. \end{cases}$$

Proof of Proposition 2 ($f = 1$). We may assume $0 < \delta < 1/4$. By applying Lemma 10 and Lemma 11 with $\epsilon = 1$ we obtain

$$\sum_{q=1}^{h} \sum_{r=1}^{h} A(k, q, r) \leq \Psi(h)^{1+\delta} + \sum_{q=1}^{h} \sum_{r=1}^{q} \psi(q)P(q)^{-1}E_\delta(k, q, r).$$

By Lemma 13,

$$\sum_{q=1}^{h} \sum_{r=1}^{h} P(q)^{-1}E_\delta(k, q, r)$$

$$\leq \sum_{q=1}^{h} q^{-1} \sum_{d* \mid P(q)} (qd*^{-1/4} + d* + q^{1/2}) + \sum_{q=1}^{h} \sum_{d* \mid P(q); d* \geq P(q)k} -1$$

$$\leq \sum_{q=1}^{h} \sum_{d* \mid P(q)} d^{-1/4} + \sum_{q=1}^{h} q^{-1/2}D(P(q)) + \sum_{q=1}^{h} D_q(P(q))$$

$$\leq h + h + hk^\delta \leq hk^\delta.$$
Here we used (4.1) and Lemmas 7 and 8 to estimate the last three sums. Proposition 2 now follows by partial summation.

9. The higher dimensional case. Most of the arguments used for the case $n = 1$ carry over immediately to $n > 1$, but some of them have to be modified.

We may assume that I_{j_0} is of the type $0 < \xi_j - \theta_j \leq \psi_j(q)$. For each of the integers $j = 1, \ldots, n$ we can now define $a_j(q)$, $b_j(b)$, $S_j(k,q)$, $\beta_j(q,a_j)$, $\gamma_j(q,a_j)$, \cdots, $\Gamma_j(k,q,r)$. For given q, r we write d^n_j for the greatest common divisor of $P_j(q)$ and $P_j(r)$, and we may now define $B_j(k,q,r)$, \cdots, $E_{j_0}(k,q,r)$, $F_j(q,r)$, $G_j(q,d^n_j)$. We put $\beta(q, a_1, \cdots, a_n) = \prod_j \beta_j(q,a_j)$, $\gamma(q,a_1, \cdots, a_n) = \prod_j \gamma_j(q,a_j)$, \cdots, $\Gamma(k,q,r) = \prod_j \Gamma_j(k,q,r)$, and we define $A(k,q,r)$ as in paragraph 2.

Proposition 1a. Let $\delta > 0$. Then

$$\sum_{q=1}^h (P_1(q) \cdots P_n(q) - \phi(k, P_1(q)) \cdots \phi(k, P_n(q)))^{-1} \leq h \delta^{-1} + h^\delta \delta.$$

Proposition 2a. Let $\delta > 0$. Then (3.2) holds.

The argument of paragraph 3 can be used to deduce the general theorem from these propositions.

Proposition 1a follows from Proposition 1 and

$$P_1(q) \cdots P_n(q) - \phi(k, P_1(q)) \cdots \phi(k, P_n(q)) = \sum_{j=1}^n P_1 \cdots P_{j-1}(P_j - \phi(k, P_j))\phi(k, P_{j+1}) \cdots \phi(k, P_n).$$

(6.1) now becomes

$$\Gamma_j(k,q,r) \leq \psi_j(q)\psi_j(r) + \psi_j(q)P_j(q)^{-1}B_j(k,q,r),$$

and therefore for $r \leq q$

$$A(k,q,r) \leq \sum_{m=1}^n \sum_{\Delta_m} H(k,q,r;m,\Delta_m),$$

where Δ_m runs through all divisions of the integers 1, \ldots, n into two classes i_1, \cdots, i_m and j_1, \cdots, j_{n-m}, and where

$$H(k,q,r;m,\Delta_m) = \psi(q) \prod_{s=1}^m (P_s^{-1}(q)B_s(k,q,r)) \prod_{t=1}^{n-m} \psi_t(r).$$

For reasons of symmetry it will suffice to estimate $H(k,q,r;m,\Delta^o_m)$, where Δ^o_m is the division with $i_1 = 1, \cdots, i_m = m$. We shall use

(9.1) $B_i(k,q,r) \leq 2d^n_i$ \hspace{1cm} (i = 1, \ldots, n).

Lemma 14. Let $m > 1$. Then

$$\sum_{q=1}^h \sum_{r=1}^q H(k,q,r;m,\Delta^o_m) \ll \Psi(h).$$
Proof. We use the estimate
\[H(k, q, r; m, \Delta_n^q) \ll \psi(q) P_1(q)^{-1} P_2(q)^{-1} d_1^* d_2^*. \]

By Schwartz' inequality,
\[
Y_h = \sum_{q=1}^{h} \sum_{r=1}^{q} P_1(q)^{-1} d_1^* P_2(q)^{-1} d_2^* \leq \left(\sum_{q=1}^{h} \sum_{r=1}^{q} P_1(q)^{-2} d_1^{*2} \right)^{1/2} \left(\sum_{q=1}^{h} \sum_{r=1}^{q} P_2(q)^{-2} d_2^{*2} \right)^{1/2}.
\]

Now
\[
\sum_{q=1}^{h} \sum_{r=1}^{q} P(q)^{-2} d_1^{*2} \leq \sum_{q=1}^{h} P(q)^{-2} \sum_{d \mid P(q)} d^2 \sum_{r \leq q} 1 \leq \sum_{q=1}^{h} P(q)^{-2} \sum_{d \mid P(q)} d^2 P(q) d^{-1} = \sum_{q=1}^{h} \sum_{d \mid P(q)} d^{-1} \ll h
\]

by Lemma 7. Hence \(Y_h \ll h \), and Lemma 14 follows by partial summation.

Everything can be completed as in the case \(n = 1 \) once we have shown

Lemma 11a. Let \(\epsilon = 1 \) if the degree \(f_1 \) of \(P_1(x) \) equals 1, \(\epsilon > 0 \) if \(f_1 > 1 \). Let \(\delta > 0 \). Then

\[
\sum_{q=1}^{h} \sum_{r=1}^{q} H(k, q, r; 1, \Delta_n^q) \ll \Psi(h)^{1+\delta} + \sum_{q=1}^{h} \sum_{r \leq q \text{ with } d_1^* q \leq r} \psi(q) P_1(q)^{-1} E_1(k, q, r).
\]

Proof. Choose \(\delta_1 > 0, \delta_2 > 0 \) such that \(\delta_1 + 1/\delta_2 < \delta \). We write \(\chi_1(q) = \psi_2(q) \cdots \psi_n(q) \) and put

\[
\Psi_1(h) = \sum_{q=1}^{h} \psi_1(q), \quad X_1(h) = \sum_{q=1}^{h} \chi_1(q).
\]

Since both \(\psi_1(q) \) and \(\chi_1(q) \) are decreasing, one has

\[
(9.2) \quad h \Psi(h) \geq \Psi_1(h) X_1(h).
\]

\(H(k, q, r; 1, \Delta_n^q) \) equals \(\psi(q) P_1(q)^{-1} B_1(k, q, r) \chi_1(r) \).

We consider four parts of the sum we want to estimate. \(\Sigma_1 \) consists of terms with \(d_1^* < q^{1-\epsilon} \), \(\Sigma_2 \) of terms with \(d_1^* < (q/r)^{1/\delta_1} \), \(\Sigma_3 \) of terms where \(d_1^* < \Psi_1(q)^{\delta_2} \), and \(\Sigma_4 \) consists of the remaining terms, that is, terms where \(d_1^* \geq q^{1-\epsilon} \).
For the parts Σ_1, Σ_2, Σ_4 we estimate $H(\cdots) \leq \psi(q)P_1(q)^{-1}B_1(k,q,r)$ and proceed as in paragraph 6. The difficulty lies in estimating Σ_3.

Let $d\mid P_1(q)$ and denote the numbers r having $r \leq q$ and $d\mid P_1(r)$ by $r_1 < r_2 < \cdots < r_J$. One has $j \leq P_1(q)d^{-1}$ and $r_j \leq c(jd)^{1/f_1} \geq c'djP_1(q)^{-1}q$ for large q. Hence

\[
\sum_{r \leq q \text{ with } d^* \leq \Psi_1(q)} B_1(k,q,r) \chi_1(r) \leq \sum_{d\mid P_1(q)} \delta_d \sum_{r \leq q \text{ with } d\mid P_1(r)} \chi_1(r) \\
\leq \sum_{d\mid P_1(q)} \delta_d \sum_{r \leq q} \chi_1(q)P_1(q)q^{-1}d^{-1} \\
= \chi_1(q)P_1(q)q^{-1}D_f(P_1(q))
\]

with $f = f(q) = \Psi_1(q)^{3/2}$. Hence

\[(9.3) \quad \sum_3 \leq \sum_{q=1}^{h} \psi(q)q^{-1}X_1(q)D_f(P_1(q)).\]

We estimate the last sum in three parts, which overlap somewhat.

$T_1 : \Psi(q) \geq q^{1/4d_2}$. Unless this part is empty, there is a largest $q \leq h$ in T_1 say q_1. By (4.1),

\[
T_1 \leq \sum_{q=1}^{q_1} \psi(q)D(P_1(q)) \leq \sum_{q=1}^{q_1} \psi(q)q^{3/4d_2} \leq \Psi(q_1)q_1^{3/4d_2} \\
\leq \Psi(q_1)^{1+\delta} \leq \Psi(h)^{1+\delta}.
\]

$T_2 : \chi_1(q) \leq q^{1-1/4d_2}$. Again using (4.1) we obtain

\[
T_3 = \sum_{q\in \sigma} g(q)D_f(P_1(q)) = \sum_{d \leq f(h_1)} \sum_{q \in \sigma, d\mid P_1(q), f(q) \geq d} g(q).
\]

Let $x_1, \ldots, x_d(d)$ be the solutions of $P_1(x) \equiv 0 (\mod d)$. Since $g(q)$ is decreasing, one has

\[
\sum_{q \in \sigma, f(q) \geq d, q = x_i (\mod d)} g(q) \leq g(q_i) + d^{-1} \sum_{f(q) \geq d} g(q),
\]

where q_i is the smallest $q = x_i (\mod d)$ such that $q \in \sigma$ and $f(q) \geq d$. Since $f(q) \leq q^{1/2}$, one finds $q_i \geq d^2$. Therefore

\[
\sum_{q \in \sigma, f(q) \geq d, d\mid P_1(q)} g(q) \leq z(d)g(d^2) + z(d)d^{-1} \sum_{f(q) \geq d} g(q).
\]
Observing \(z(d)g(d^2) \leq dg(d^2) \leq \sum_{q=(d-1)^2+1}^{d^2} g(q) \) we obtain

\[
T_3 \leq \sum_{d \leq f(h_1)} \left(\sum_{q=(d-1)^2+1}^{d^2} g(q) + z(d)d^{-1} \sum_{f(q) \geq d} g(q) \right)
\]

\[
\leq \sum_{q=1}^{f_1(h_1)} \psi(q) + \sum_{q=1}^{h} g(q) \sum_{d \leq f(q)} z(d)d^{-1}
\]

\[
\leq \Psi(h) + \sum_{q=1}^{h} \psi(q)\Psi_1(q)\delta
\]

by Lemma 5. (9.2) finally yields

\[
T_3 \ll \Psi(h) + \sum_{q=1}^{h} \psi(q)(q^{-1}X_1(q))^{1-\delta}\Psi(q)^{\delta} \ll \Psi(h)^{1+\delta}
\]

Lemma 11a is proved.

10. Linear forms. We restrict ourselves to the case of one form only.

Proposition 3. Let \(P_1(q_1), \ldots, P_n(q_n) \) be nonconstant polynomials, \(n+1 \), and let \(I_{q_1, \ldots, q_n} \) be intervals of \(C \) \((q_i = 1, 2, \ldots ; i = 1, \ldots, n) \). We assume that the length of \(I_{q_1, \ldots, q_n} \) is \(\psi_1(q_1)\psi_2(q_2) \cdots \psi_n(q_n) \), where \(\psi_i(x) \) are decreasing functions \((i = 1, \ldots, n) \), and we put

\[
\Psi_i(h) = \sum_{q_i=1}^{h} \psi(q_i).
\]

We write \(M(h_1, \ldots, h_n; \alpha_1, \ldots, \alpha_n) \) for the number of solutions of \(\{ \alpha_1P_1(q_1) + \cdots + \alpha_nP_n(q_n) \} \in I_{q_1, \ldots, q_n} \), where \(1 \leq q_i \leq h_i \) \((i = 1, \ldots, n) \). Let \(\epsilon > 0 \). Then for almost all \(\alpha_1, \ldots, \alpha_n \),

\[
M(h_1, \ldots, h_n; \alpha_1, \ldots, \alpha_n) = \Psi_1(h_1) \cdots \Psi_n(h_n) + O(\Psi_1(h_1) \cdots \Psi_n(h_n))^{1/2+\epsilon}.
\]

This estimate holds simultaneously for \(h_1, \ldots, h_n \).

Proof. We restrict ourselves to a few hints. The reader might compare paragraph 6 of [12]. We assume \(n > 1 \).

We put \(\beta(q_1, \ldots, q_n, \xi) \) equal to 1 if \(\{ \xi \} \in I_{q_1, \ldots, q_n} \) and \(\xi \in U, \beta(\cdots) = 0 \) otherwise. \(\Gamma(q_1, \ldots, q_n; r_1, \ldots, r_n) \) stands for the integral

\[
\int_0^1 \cdots \int_0^1 \left(\sum_p \left(\beta(q_1, \ldots, q_n, \sum \alpha_iP_i(q_i) - p) \right) \left(\sum_s \beta(r_1, \ldots, r_n, \sum \alpha_iP_i(r_i) - s) \right) \right) \, d\alpha_1 \cdots d\alpha_n,
\]

and \(A(q_1, \ldots, q_n; r_1, \ldots, r_n) \) for

\[
\Gamma(q_1, \ldots, r_n) - \psi_1(q_1) \cdots \psi_n(q_n)\psi_1(r_1) \cdots \psi_n(r_n).
\]

Proposition 2b. \(\sum_{q_1=1}^{h_1} \cdots \sum_{r_n=1}^{h_n} A(q_1, \ldots, r_n) \ll \Psi_1(h_1) \cdots \Psi_n(h_n). \)
To deduce Proposition 3 from Proposition 2b we put

\[M(h_1, \ldots, h_n; k_1, \ldots, k_n; \alpha_1, \ldots, \alpha_n) \]

for the number of \(q_1, \ldots, q_n, h_i < q_i \leq k_i \) (\(i = 1, \ldots, n \)) such that \(\{ \sum \alpha_i P_i(q_i) \} \in I_{q_1, \ldots, q_n} \) and we put \(\Psi(h, k) = \sum_{h < q \leq k} \psi(q) \). We choose integers \(m_i = m_i(r_1, \ldots, r_n) \) such that \(\lfloor 2^{r_1 + \ldots + r_n} \rfloor \Psi(m_i) \rfloor = u \) The following two lemmas are now used.

Lemma 2b. Let \(\delta > 0 \). Then one has for \(T = r_1 + \ldots + r_n \)

\[
\sum_{(u_1, v_1) \in J} \ldots \sum_{(u_n, v_n) \in J} \int_0^1 (M(m_{u_1}^1, \ldots, m_{u_n}^n; m_{v_1}^1, \ldots, m_{v_n}^n; \alpha_1, \ldots, \alpha_n)
- \Psi_1(m_{u_1}^1, m_{v_1}^1) \Psi_n(m_{u_n}^n, m_{v_n}^n))^2 \, d\alpha_1 \ldots d\alpha_n
\leq 2^{(r_1 + \ldots + r_n)(1 + \delta)} .
\]

Lemma 3b. Let \(\delta > 0 \). There are subsets \(\sigma_{r_1, \ldots, r_n} (r_i = 1, 2, \ldots; i = 1, \ldots, n) \) of \(U \times \ldots \times U \) with measures

\[
\mu_{r_1, \ldots, r_n} \leq r_1^{-2} \ldots r_n^{-2}
\]
such that

\[
M(m_{w_1}^1, \ldots, m_{w_n}^n; \alpha_1, \ldots, \alpha_n) = \Psi_1(m_{w_1}^1) \Psi_n(m_{w_n}^n) + O(r_1^2 \ldots r_n^2 (r_1 + \ldots + r_n)(1/2 + \delta))
\]
for every \(w_1, \ldots, w_n \) with \(w_i \leq 2^{r_1 + \ldots + r_n} \) (\(i = 1, \ldots, n \)) and \((\alpha_1, \ldots, \alpha_n) \) in \(U \times \ldots \times U \) but not in \(\sigma_{r_1, \ldots, r_n} \).

To prove Proposition 2b we require

Lemma 10b. A. If the matrix

\[
\begin{pmatrix}
P_1(q_1), \ldots, P_n(q_n) \\
P_1(r_1), \ldots, P_n(r_n)
\end{pmatrix}
\]

has rank 2, then

\[
A(q_1, \ldots, r_n) = 0.
\]

B. If the matrix has rank 1, then

\[
A(q_1, \ldots, r_n) \leq \psi_1(q_1) \cdots \psi_n(q_n) P_1(q_1)^{-1} B_1(q_1, \ldots, r_n),
\]
where \(B_1(q_1, \ldots, r_n) \) is the number of solutions of \(\lfloor P_1(q_1)(s + \theta') - P_1(r_1)(p + \theta) \rfloor < d^*_i \) in integers \(p, s, 0 \leq p < P_1(q_1) \), where \(\theta, \theta' \) are the left endpoints of \(I_{q_1, \ldots, q_n}, I_{r_1, \ldots, r_n}, \) respectively, and where \(d^*_i = \text{g.c.d.} (P_1(q_1), P_1(r_1)) \).

We leave the proof of A to the reader. As for B, we make the substitution \(\alpha_2 = \xi_2, \ldots, \alpha_n = \xi_n, \sum \alpha_i P_i(q_i) = \xi_1 P_1(q_1) \), hence \(\sum \alpha_i P_i(r_i) = \xi_1 P_1(r_1) \). When \(\xi_2, \ldots, \xi_n \) is fixed, \(\xi_1 \) ranges in an interval of length 1, and \(\Gamma \) equals
\[
\int_0^1 \left(\sum_{i} \beta(q_1, \ldots, q_n, \xi_1 P_1(q_1) - p) \right) \left(\sum_{s} \beta(r_1, \ldots, r_n, \xi_1 P_1(r_1) - s) \right) d\xi_1.
\]

This one-dimensional integral can be estimated by the method of paragraph 6.

The proof of Proposition 2b now proceeds as follows. We may restrict ourselves to terms \(r_1 \leq q_1 \). For fixed \(q_1, \ldots, q_n \), let \(\Delta = \text{g.c.d.}(P_1(q_1), \ldots, P_n(q_n)) \) and \(P_i(q_i) = P_i(q_i)^*\Delta \). In view of Lemma 10b we may restrict ourselves to \(r_1 \leq q_1 \) where \(P_1(q_1) \) is of the type \(IP_1(q_1)^* \), whence \(d_1^* = P_1(q_1)^*(\Delta, I) \). Since \(B(q_1, \ldots, r_n) \leq 2d_1^* \), one has

\[
\sum_{q_1 = 1}^{b_1} \cdots \sum_{q_n = 1}^{b_n} A(q_1, \ldots, r_n) \leq 4 \sum_{q_1 = 1}^{h_1} \cdots \sum_{q_n = 1}^{h_n} \psi_1(q_1) \cdots \psi_n(q_n) \sum_{l=1}^{A} P_1(q_1)^{-1}(P_1(q_1)^*(\Delta, I))
\leq 4 \sum_{q_1 = 1}^{h_1} \cdots \sum_{q_n = 1}^{h_n} \psi_1(q_1) \cdots \psi_n(q_n) D(\Delta)
\leq 4 \left(\sum_{q_1 = 1}^{h_1} \sum_{q_2 = 1}^{h_2} \psi_1(q_1) \psi_2(q_2) D(P_1(q_1), P_2(q_2)) \right)^{\Psi_3(h_3) \cdots \Psi_n(h_n)}.
\]

Using Lemma 9 and partial summation both for the sum over \(q_1 \) and over \(q_2 \) we obtain

\[
\sum_{q_1 = 1}^{h_1} \sum_{q_2 = 1}^{h_2} \psi_1(q_1) \psi_2(q_2) D(P_1(q_1), P_2(q_2)) \ll \Psi_1(h_1) \Psi_2(h_2).
\]

11. Theorem 2. To prove the lower bound in (1.5) we shall need

Proposition 4. Let \(a(1) < a(2) < \cdots \) be a sequence of positive integers and put \(M_a(h; \alpha) \) for the number of \(q \leq h \) such that \(\{xa(q)\} \in I \). Then for \(\varepsilon > 0 \) and almost all \(\alpha \) the inequality

\[
|M_a(h; \alpha) - h\lambda(I)| < h^{1/2} \log^{5/2 + \varepsilon} h
\]

holds for all intervals \(I \) and all \(h > h_1 \), where \(h_1 \) depends only on \(\alpha \) and \(\varepsilon \) (but not on \(I \)).

Proof. This proposition is a special case of Theorem 1 of [3] and of Theorem 1 of [6].

Proof of Theorem 2. We use the abbreviation

\[
\left\| \sum_{i=1}^{n} a_i(q_i) \right\| = \left\| \sum_{i=1}^{n} a_i(q_i) + \theta \right\|.
\]

Put \(\delta = \varepsilon/(n + 1) \). Using an idea of Littlewood [4, Appendix A], we consider the integral

\[
J(q_1, \ldots, q_n) = \int_0^1 \cdots \int_0^1 \left(\| \sum_{i=1}^{n} a_i(q_i) \| \log \| \sum_{i=1}^{n} a_i(q_i) \| \right)^{1+\delta} d\alpha_1 \cdots d\alpha_n.
\]
This integral has a finite value independent of \(q_1, \ldots, q_n \). Hence the sum

\[
\sum_{q_1=1}^{\infty} \cdots \sum_{q_n=1}^{\infty} (q_1 \log^{1+\delta} q_1 \cdots q_n \log^{1+\delta} q_n)^{-1} J(q_1, \ldots, q_n)
\]

is convergent and

\[
(11.1) \quad \sum_{q_1=1}^{\infty} \cdots \sum_{q_n=1}^{\infty} (q_1 \log^{1+\delta} q_1 \cdots q_n \log^{1+\delta} q_n) \log \| \sum \| |1+\delta|-1
\]

is convergent for almost all \(\alpha_1, \ldots, \alpha_n \).

It is easy to see that the inequality

\[
(11.2) \quad \| \sum \| \leq (q_1 \cdots q_n)^{-2}
\]

has only a finite number of solutions in integers \(q_1, \ldots, q_n \) for almost every \(\alpha_1, \ldots, \alpha_n \).

We are going to show that the upper estimate for \(\sum(h; \alpha_1, \ldots, \alpha_n) \) in (1.5) is true for every \(\alpha_1, \ldots, \alpha_n \) such that (11.1) is convergent and (11.2) has only finitely many solutions. There is a constant \(c > 0 \) such that \(\| \sum \| \geq c^{-1} (q_1 \cdots q_n)^{-2} \), whence

\[
|\log \| \sum \| | \leq 2 \log (q_1 \cdots q_n) + \log c.
\]

We obtain

\[
\sum(h; \alpha_1, \ldots, \alpha_n) \leq (\max_{q_i \leq h} (\log^{1+\delta} q_1 \cdots \log^{1+\delta} q_n | \log \| \sum \| |1+\delta)))
\]

\[
\sum_{q_1=1}^{\infty} \cdots \sum_{q_n=1}^{\infty} (q_1 \log^{1+\delta} q_1 \cdots q_n \log^{1+\delta} q_n) \log \| \sum \| |1+\delta|-1
\]

\[
\leq (\log h)^{(1+\delta)n} (\log h^{1+\delta}) \leq (\log h)^{n+1+\delta}.
\]

We now turn to the proof of the lower bound in (1.5). We are going to apply Proposition 4 to the sequence \(a(q) = a_1(q) \). For almost all reals \(\alpha \) and \(h \geq h_1(\alpha) \) one has \(|M_f(h; \alpha) - h l(l)| < h^{3/4} \). Let \(\alpha \) have this property. Denote the number of \(q \leq h \) such that \(\| \alpha_1 a_1(q) + \eta \| \leq \gamma \) by \(M_{\gamma,n}(h; \alpha_1) \). Then

\[
|M_{\gamma,n}(h; \alpha_1) - 2\gamma h| < h^{3/4} \quad \quad (h \geq h_1(\alpha_1), 0 \leq \gamma \leq 1/2, \eta \text{ arbitrary}).
\]

Let \(k_0 = k_0(h) \) be the largest integer with \(2^{k_0+1} \leq h^{1/4} \). Then \(k_0 \geq 0 \) for \(h \geq h_2(\alpha_1) = \max(h_1(\alpha_1), 2^0) \). The number \(N_{k,n}(h; \alpha_1) \) of \(q \leq h \) such that

\[
(11.3) \quad 2^{-k-1} \| \alpha_1 a_1(q) + \eta \| \leq 2^{-k}
\]

satisfies \(N_{k,n}(h; \alpha_1) \geq 2^{-k} h - 2h^{3/4} \geq 2^{-k-1} h \) for every \(k \in 0 \leq k \leq k_0 \).

By considering the parts of the sum where (11.3) is satisfied for \(k = 0, \ldots, k_0 \) we obtain

\[
\sum_{q=1}^{h} \| \alpha_1 a_1(q) + \eta \| ^{-1} \geq \sum_{k=0}^{k_0} 2^k 2^{-k-1} h > \frac{1}{2} h k_0(h) \geq c_1(\alpha_1) h \log h.
\]

Partial summation yields
This inequality holds for arbitrary \(\eta \). By writing \(\eta = \alpha_2 a_2(q_2) + \cdots + \alpha_n a_n(q_n) + \theta \) and taking the sum over \(q_2, \ldots, q_n \) one finds
\[
\sum (h; \alpha_1, \ldots, \alpha_n) \geq c_3(\alpha_i) \log^{n+1} h.
\]

Remark. Our method could be used to show the following: The left inequality of (1.5) is true for arbitrary \(\alpha_1, \ldots, \alpha_{n-1} \) and \(\alpha_n \in \sigma(\alpha_1, \ldots, \alpha_{n-1}) \), where \(\sigma(\cdots) \) is a set containing almost all numbers. The other inequality of (1.5) holds for \(n \)-tuples such that \(\alpha_n \in \tau \) where \(\tau \) is independent of \(\alpha_1, \ldots, \alpha_{n-1} \) and contains almost all numbers.

12. Theorem 3. We define a function \(n(k_1, \ldots, k_n) \) as follows. \(n(0, \ldots, 0) = 0 \), and if \(k_1, \ldots, k_{i_m} \) are those \(k_i \)'s which are different from zero, then \(n(k_1, \ldots, k_n) = |k_1 \cdots k_{i_m}|^{-1} \). In our applications \(k_1, \ldots, k_n \) will always be integers. Write \(\exp \xi \) for \(e^{2\pi i \xi} \).

Generalized theorem of Erdös and Turan. There are absolute constants \(c_n, n = 1, 2, \ldots \) with the following properties.

Let \(n \geq 1, h \geq 1, \) and let vectors \((\alpha_{i_1 q}, \ldots, \alpha_{i_n q}) \) be given \((q = 1, \ldots, h) \). Put
\[
\omega(k_1, \ldots, k_n) = \left| \sum_{q=1}^{h} \exp \left(\sum_{i=1}^{n} \alpha_{i q} k_i \right) \right|.
\]

Let \(I_1, \ldots, I_n \) be intervals of \(C \) of lengths \(k(I_j) = \psi_j \) and put \(\psi = \prod \psi_j \). Write \(N \) for the number of \(q, 1 \leq q \leq h, \) such that simultaneously \(\{\alpha_{i q}\} \in I_j (j = 1, \ldots, n) \).

Let \(m \) be a positive integer. Then
\[
|N - \psi l| \leq c_n \left(h m^{-1} + \sum_{k_1, \ldots, k_n : |k_j| \leq m} \pi(k_1, \ldots, k_n) \omega(k_1, \ldots, k_n) \right).
\]

This theorem is a generalization to \(n \) dimensions of a result of Erdös and Turan [7, Theorem 3]. We shall not give a proof, since the argument in [7] can easily be extended to our situation.

Proof of Theorem 3. Put \(\alpha_{j q} = \alpha_{j q} (j = 1, \ldots, n; q = 1, 2, \ldots) \).
\[
\omega_{\delta}(k_1, \ldots, k_n) = \left| \sum_{q=1}^{h} \exp \left(\sum_{k=1}^{n} k_q \alpha_{q} \right) \right| \leq \left\| k_1 \alpha_1 + \cdots + k_n \alpha_n \right\|^{-1}.
\]

Theorem 3 is an immediate consequence of the generalized Erdös-Turan Theorem with \(m = h \) and the fact that
\[
\sum_{k_1, \ldots, k_n : |k_j| \leq m} \pi(k_1, \ldots, k_n) \left\| k_1 \alpha_1 + \cdots + k_n \alpha_n \right\|^{-1} \leq (\log m)^{n+1+s}
\]
for almost every \(\alpha_1, \ldots, \alpha_n \). This fact follows from Theorem 2.
References

COLUMBIA UNIVERSITY,
NEW YORK, NEW YORK

UNIVERSITY OF COLORADO,
BOULDER, COLORADO