Sequentially $1-\textrm {ULC}$ tori
HTML articles powered by AMS MathViewer
- by David S. Gillman
- Trans. Amer. Math. Soc. 111 (1964), 449-456
- DOI: https://doi.org/10.1090/S0002-9947-1964-0162234-6
- PDF | Request permission
References
- W. R. Alford, Some βniceβ wild $2$-spheres in $E^{3}$, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.Β 29β33. MR 0141091
- R. H. Bing, A wild surface each of whose arcs is tame, Duke Math. J. 28 (1961), 1β15. MR 123302
- R. H. Bing, A simple closed curve that pierces no disk, J. Math. Pures Appl. (9) 35 (1956), 337β343. MR 81461
- R. H. Bing, Approximating surfaces with polyhedral ones, Ann. of Math. (2) 65 (1957), 465β483. MR 87090
- R. H. Bing, A surface is tame if its complement is $1$-ULC, Trans. Amer. Math. Soc. 101 (1961), 294β305. MR 131265, DOI 10.1090/S0002-9947-1961-0131265-1 β, Pointlike decompositions of ${E^3}$, Fund. Math. 50 (1962), 431-453. C. H. Edwards, A characterization of tame curves in the 3-sphere, Abstract 573-32, Notices Amer. Math. Soc. 7 (1960), 875.
- Ralph H. Fox and Emil Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2) 49 (1948), 979β990. MR 27512, DOI 10.2307/1969408
- David S. Gillman, Note concerning a wild sphere of Bing, Duke Math. J. 31 (1964), 247β254. MR 161317
- O. G. Harrold Jr., H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc. 79 (1955), 12β34. MR 91457, DOI 10.1090/S0002-9947-1955-0091457-4
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 111 (1964), 449-456
- MSC: Primary 54.78
- DOI: https://doi.org/10.1090/S0002-9947-1964-0162234-6
- MathSciNet review: 0162234