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Introduction. A semigroup G is said to have a left [right] invariant mean,

in other words is left [right] amenable, if there exists a linear functional <¡> on the

space of all the bounded real functions on G (with the sup. norm), m(G), which

satisfies for each fem(G) and aeG

(1) inff(g) = <¡>(f) Ú  sup/(g),
geG geG

(2) <Kf) = <KU),     l<t>(f) = <KrJ)l

where (lj)(g) =f(ag) and  (raf)(g) =f(ga).

An invariant mean is a right and left invariant mean. Ml(G), \Mr(G)~\ c m(G)*

will denote the set of left [right] invariant means and dim MIG = n will mean

that the linear manifold spanned by Ml(G) cz m(G)* is n-dimensional (see [5,

§2]). Q: ly(G) -* m(G)* will denote the natural mapping of the semigroup algebra

ly(G) into m(G)*.

The following is a result of I. S. Luthar (see [9]):

A commutative semigroup G has a unique invariant mean (i.e., dim Ml(G) = 1)

if and only if G contains a finite ideal. Luthar's proof also yields that the unique

invariant mean has to belong to Qly(G).

The main result of this paper is the following :

Theorem 1. If G is a semigroup with dim Ml(G) = n and dim Mr(G) = m

where 0 < m, n < co then:

m = n = 1,    Ml(G) = Mr(G) c Qly(G)

and G contains a finite group which is a two-sided ideal (and therefore a minimal

left and minimal right ideal).

If G contains a finite group which is a two-sided ideal then it is also easily

shown that Ml(G) = Mr(G) c Qly(G) and dim Ml(G) = dim Mr(G) = 1.
Theorem 1 implies that for commutative semigroups G only one of the two

cases can occur: either dim Ml(G) = 1 or dim Ml(G) = co. It also implies Luthar's

result.

We have the following remarks to Theorem 1 :
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For countable semigroups much more than Theorem 1 is proved by this author

in [5] (see [5, Corollary (5.5) and Remark (3.1)]), i.e.:

If G is a semigroup which satisfies that dim Ml(G) = n and Mr(G) # 0 then

n — 1, Ml(G) = Mr(G) c Qlx(G) and G contains a finite group which is a two-

sided ideal.

In particular if G is countable and has a unique left invariant mean p, then as

easily seen p is also a right invariant mean, but moreover, by the above theorem, p

is the unique right invariant mean and G contains a finite group which is a two-

sided ideal.

Thus for countable semigroups dim Mr(G) < co is not imposed on G while we

get the same result as in Theorem 1 of this paper. Therefore dim Mr(G) < co is

seemingly a superfluous condition and this author was not yet able to drop it.

A proof of Theorem 1 of this paper without imposing on G the condition

dim Mr(G) < co but only Mr(G) =£ 0 would lead to a proof of Theorem A in [5]

without imposing on G to be countable (see [5, §1]), i.e., to a complete characteri-

zation of left amenable semigroups with a finite dimensional set of left invariant

means.

There are in this paper several other results which may have some interest for

their own sake. For instance, it is shown as an immediate consequence of Theorem

1 that for commutative semigroups G, the radical of the second conjugate algebra

m(G)*, is infinite dimensional, if G does not contain finite ideals. If we take G to

be an infinite commutative group then, as known, the group algebra Zi(G) is

semisimple (i.e., has zero radical) and Qlx(G) is w* dense in the second conjugate

algebra m(G)* (as defined in [3, p. 526]). Nevertheless one gets that the radical

of m(G)* is infinite dimensional (which is a conjecture made by P. Civin and

B. Yood; see [1, p. 853] and also [5, last page "added in print"]).

Some definitions and notations. Let G0 c G be a semigroup and subsemigroup

and let 7t: m(G)-> m(G0) such that (nx)(g) = x(g) for geG0, la: m(G) -* m(G)

such that (lax)(g) = x(ag) for a,geG, l°:m(G0) -*■ m(G0) such that

UaX)(g) = x(ag) for a,geG0.

If 0, t]/e m(G)* then <f> © i/r e m(G)* will be defined for x e m(G) by

(<p 0 i/r)(x) = <p(y) where y(b) = \¡i(lbx). (See Day [3, p. 527].)

If A cz G and if 1A is the characteristic function of A and if 0 e m(G)* then we

will write sometimes <j>(A) instead of <j>(lA). We will denote by Jl(G) = {<¡> e m(G)*;

Lg<j) = (¡> for g e G} (which is the set of left invariant elements of G).

For other notations we refer to [5, §2]. We will prove now

Lemma 1. Let G be a left amenable semigroup and p e Ml(G). If G0cG is a

subsemigroup such that p(G0) > 0 then the linear operator T: m(G0)* -* m(G)*

defined by Tv = pQ(n*v) (see Day [3, p. 533]) satisfies T[Ml(G0)] <= Ml(G) and

|| Tv0 I = p(G0) || v0 ||   for any v0 e Jl(G).
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Proof. If v e m(G)* then Tv = pQ (it*v) e Jl(G) (see proof of Corollary 2 in

Day [3, p. 529]). If v e m(G0)* is a mean then so is 7t*v (see [6, Remark (2.2)])

and therefore so is u © n*v (if (¡>, \¡i are means then so is <j> © \¡/ as is easily seen).

Therefore T[Ml(G0)~\ cz M 1(G). Since 0 is distributive (see [3, p. 527]) and it*

linear, T is linear.

We will prove now that for any e > 0

|| Tv0 || ̂  /x(Gfo) El v0 || - e].

Let x0 e m(G0) be such that

|| x0 || = 1 and v0(x0) = || v0 || - z > 0.

We define now xem(G) by:

x(g) = x0(g) for g e G0 and x(g) = 0 for g $ G0.

Obviously || x I = 1 and :

(3) [Tv0] (x) - I> 0 (7t*v0) ] (x) = p(y)

where y is defined by:

y(h) = [rc*v0](/»x) = v0(nlhx).

By Remark (2.3) in [6] y(h) is constant on left cosets of G with respect to G0.

Since G0 is left amenable we have for any a,beG0, aG0n bG0 + 0, as easily

seen [5, end of proof of Corollary (5.5)]. This yields the existence of gy, g2 in G0

satisfying agy = bg2. Thus a « b (see for instance definition after Lemma (5.1)

in [5]), which shows that G0 is included in exactly one coset of G with respect to

G0 (let it be H0).

If a £ H0 then aG0 C\G0 = 0 (otherwise ab = c for b, c in G0 and thus axe,

i.e., aeH0).

We claim now that y(g) = v0(x0) ■ lBo(g).

By the above remark y(g) is constant on H0 and if a e G0 cz H0 then :

y(a) = v0(nlax) = v0(l°nx) = v0(nx) = v0(x0).

(For the second equality see Remark (2.1) in [6]. The third holds since v0eJ/(G0).)

Thus y(g) = v0(x0) for any g e H0. If now a£H0 then we have for g in G0

[n(lax)-](g) = (lax)(g) = x(ag) = 0

since aG0 OG0 = 0 (see the definition of x). Therefore

y(a) = v0(itlax) = v0(0) = 0

which proves that

y(g) = v0(x0)lHo(g).

However
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[Tv0](x) = ply) = /i[vo(x0)lHo] = v0(x0)p(H0) ^ v0(x0)p(G0)

= KG0)[||v0||-£]

which shows that

|Tvo|*tf<7o)|vol,

thus finishing the proof of our lemma.

Remark 1. This lemma proves in particular that the above constructed T

when restricted to Jl(G0) is a linear, one to one operator which maps Ml(G0)

into Ml(G). We get thus one part of the

Corollary 1. If G0 is a subsemigroup of the left amenable semigroup G with

dim Ml(G) < co and if for some p e Ml(G), p(G0) > 0 then :

0 < dim Ml(G0) ̂  dim Ml(G).

Proof. In order to get the whole corollary we have only to remark that by Day

[3, p. 518], Ml(G0) ¿ 0 which shows that dim Ml(G0) > 0. (Notice that 0 £ Ml(G0)

since the zero function of m(G)* is not a mean.)

Remark 2. Corollary 1 is also true when "left amenable" is replaced by

"right amenable" and p e Ml(G) is replaced by p e Mr(G).

To see this, and in fact this way one could prove that all the theorems of [5 ; 6]

remain true when "left" is replaced by "right," we define in G a new multipli-

cation, i.e., a Ab = ba. This multiplication renders G a semigroup, let us call it G',

which is left amenable if G was right amenable and moreover Mr(G) = Ml(G').

Thus if G0<=G and peMr(G) are such that p(G0) > 0 then peMl(G') will

satisfy that p(G'0) > 0 where G'0 is G0 with the new multiplication A. Thus by

Corollary 1

0 < dimMr(G0) = dimMl(G'0) ̂  dimM/(G') = dim Mr(G),

which shows that this remark holds true.

Remark 2 and Corollary 1 prove:

Corollary 2.   If G is an amenable semigroup such that

dimMl(G) < co and dimAfr(G) < co

and if G0 <= G is a subsemigroup such that p(G0) > 0 for some

peMl(G)nMr(G)

hen

0 < dim M/(G0) ̂  dim Ml(G)

and

0 < dim Mr(G0) ^ dim Mr(G).
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Remark. If G0czG are as in Lemma 1 then, T[(Ml(G0)~\ = Ml(G) is not

necessarily true. In fact if G = {a0,oix,---,ocn} with «¡oij = <x¡ for Oz%i,j = n and if

G0 = {a0} then dim Ml(G0) = 1 while dim Ml(G) = n + 1 (see examples on the

last page of [6]).

Definition 1. (a) If G is a semigroup then we define the following relation

between elements of G: a(r)b if and only if there exists h in G such that ah = bh.

(b) A relation ~ between elements of a semigroup will be called a two-sided

stable equivalence if it is an equivalence and if a ~ b implies ca ~ cb and ac ~ be

for any ceG (see [10, p. 60]).

Lemma 2. 7/ G is a left amenable semigroup then the relation a(r)b of

Definition 1 (a) is a two-sided stable equivalence.

Proof. G is left amenable and therefore the intersection of any two right

ideals is nonvoid [5, end of proof of Corollary (5.5)]. If a e G, a(r)a holds and if

a,beG satisfy a(r)b then b(r)a holds as is easily seen. Let now a,b,ceG satisfy

a(r)b and b(r)c; then by definition there are hx, h2 in G such that ahx = bhx and

b/t2 = cn2. But hyG C\h2G =£ 0; therefore there are h', h"in G such that hxh' = h2h".

Thus :

(ahx)h' = (bhx)h' = b(hyh') = b(h2h") = (bh2)h" = (ch2)h" = chyh'

which shows that a(r)c. We proved thus that the above relation is an equivalence.

If now a(r)b then ah0 = bh0 for some h0eG which implies that (ca)h0 = (cb)h0,

in other words that ca(r)cb for any c e G. It remains to show that ac(r)bc holds

also for any ceG. By the above cG Oh0G ^0; therefore there are g', g" such

that eg' = h0g". Thus acg' = ah0g" = bh0g" = beg' which shows that ac(r)bc.

This finishes the proof of Lemma 2.

Remark 3. If (r) is a two-sided stable relation in a semigroup G, then let

G = G/(r) stand for the set whose elements are all the equivalence classes of

elements of G with respect to the relation (r). Let us define the mapping (j) : G -* G

by (p(a) = â where ä is the equivalence class which contains the element aeG

(in other notation à = {g e G ; g(r)a}). A multiplication between the elements of G

can be defined: dob = ab, i.e., dob is the (r) equivalence class of elements of G

which contains the element ab eG.

It is well known (see [10, pp. 361-362]) that the above defined multiplication o

is well defined and associative rendering thus G a semigroup, provided that (r)

is a two-sided stable equivalence relation. The above defined <j):G->G such that

<¡>(a) = ä is, by its definition, a homomorphism of G onto G. Please remember

that the elements of G are subsets of G and we will write sometimes for some

àe G that âczG. The function 1- will then be defined as

t 1 for geá,
Ug) =

I 0 for g $ â.



372 EDMOND GRANIRER [June

15 will then denote a function from G to the reals and not from G to the reals.

This way, if \¡fem(G)*, then i/f(l5) = \j/(a) where ¿eG. This is used in places

where no ambiguity can arise.

Lemma 3. Let G be an amenable semigroup such that dim Mr(G) < co.

Then G = G/(r) (where (r) is the relation of Definition 1 (a)) is a finite group.

Proof. G is amenable and a fortiori left amenable therefore by Lemma 2 the

relation a(r)b, which holds if and only if there exists he G such that ah = bh,

is a two-sided stable equivalence. By Remark 3 G = G/(r) is a semigroup which

is a homomorphic image of G. By Luthar's theorem (for proof see [3, pp. 531-532])

there is a linear operator £* : m(G)* -> m(G)* such that £*[Mr(G)] = Mr(G),

therefore, dim Mr(G) ¿ dim Mr(G) < co. But G is a semigroup with right can-

cellation since áoc = boc implies ac = bc which implies a(ch) = b(ch) for some

heG, which by definition means that a(r)b, in other words that à = b. But G as a

homomorphic image of G is right amenable and left amenable (see Day [3,

p. 515 (C)]). Thus G is a right amenable semigroup with right cancellation and with

dim Mr(G) = n < co. We can apply Theorem E of [6] (which is true when "left"

is replaced by "right") and get that G is finite and is the union of n finite disjoint

groups each of which is a right ideal. Since G is also left amenable the intersection

of any two right ideals is nonvoid and therefore n = 1 and G is a finite group,

which finishes the proof of this lemma.

In what follows a slight generalization of a theorem of I. S. Luthar (see [9,

p. 41, Lemma 1]) will be needed. The proof follows closely Luthar's proof:

Theorem of I. S. Luthar. // £ is a directed set such that for any eeE there

exists e' eE with e' > e and e' # e and if E does not contain a finite cofinal

set then E contains n cofinal disjoint sets for any 0 < n < oo.

Remark. It is important to notice that £ is a directed set as defined in Kelley

[7, p. 65], i.e., e2 ^ ex and ey ^ e2 do not necessarily imply ex = e2. The definition

of a directed set in Köthe [8, p. 9], requires that ey ^ e2 and e2 Ï: ey implies

ex = e2 and the set to which Luthar's theorem will be applied, in what follows,

will not have in general this property.

Proof. If A cz £ is a finite subset then there is an element eeE, e$A and

e ^ a for each a eA.Otherwise each ee£ which satisfies e ^ a for each aeA

would belong to A. If e e £ is arbitrary, then let/e £ be such that/ ^ e and/ ^ a

for each aeA. This implies that/e A in other words, that A is a cofinal set which

contradicts our assumptions since A is finite.

Let now ex eE. There is then some e2eE such that e2 ^ ex and e2 + ex. If

[ex,---,ek\ were chosen as distinct elements which satisfy e¡ ̂  e¡ for 1 g j ^ i

and i = 1,2,•••,& then by the above we can choose ek+1${ei,---,ek} such that

ek+i Sí c¡ for 1 ^ i ^ k. We choose this way a sequence of distinct elements {e¡}

which satisfies et < e2 < e3 < ■ ■ •.
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Let now n > 1 be a fixed integer and *% be the set of all the n + 1 tuples

(Ay,A2,---,A„,F) where F is a subset of E and Ah\ S i Ú n, are maps from F to £

which satisfy the following:

(LI) A^nA^F) = 0 for i * j, 1 z% i,j ^ n.

(L2) A¡(F) and Aj(F) are cofinal in each other for 1 ̂  i,j SÍ n.

(L3) A¡(F) is cofinal in F for each 1 S ' Ú »■

We prove now that ^ is not empty. Let us take F as the sequence {e¡} we chose

above and let

(4) Af(eJ) = ea-y)l,+t.

Thus:

A(F) = {ekn+x; k = 0,1,2, •••}, A°2(F) = {ekn+2; k = 0,1,2, •••},

-,An°(F) = {<W„;fc = 0,1,2,-}.

It is easy to check that the here chosen n + 1 tuple (Ax, ••-,A^,F) satisfies

conditions (LI), (L2), (L3), which shows that % # 0. Let us partial order °U by

(AX,A2,---,A„,F)S(A'X,A2,-,A'„,F') which holds if and only if F c F' and for

each í Si ún, A¡ is the restriction of A\ to F.

If now ¿a/= {(.4" ,-••,/!",F"); a el} is a linearly ordered subset of "ll then we

define (Ax, ■ ■ ■, A„, F) to be : F = (J[ie/ F* and if e e F then eeF for some a and

then let Ai(e) = A*(e) for l^i^n, If eeFß for some /? ̂  a then since

(A"y,-,Al,F") and (4?,--,A?,F")are comparable we get that A'(e) = Af(e),

which shows that (AX,---,A„,F) is well defined.

Now Ai(F) = \JxeIA°(Fa), thus ¿¡(F)n,4/F) # 0 would imply

AÏ(F*) r\ A%Fß) ¿ 0 for some <x,/?e/. But either (A^, -,A'„F*) ^ (A?, • ■ •, Aj, F")

or (AÎ,-,i4J|,F'!)^(i4î,-,i4;,F*) and thus either A%Fß) cz A%FX) and then

Af(Fa) n A*(F") # 0 or A?(Fa) c Af(F') and then ¿f (F*) n ¿frf*) * 0, both of
which cannot be. This proves that (Ax, ■ ■ ■, An, F) satisfies condition (LI). Moreover

A¡(F), Aj(F) are cofinal in each other, since if eeAj(F) then eeA"(F")

but, then there is an e' e A*(F*) cz A¡(F) which satisfies e' ^ e. If now e e F then

e e F* for some a and there is an e' e A"(F") cz A¡(F) such that e' ^ e, which proves

that the above chosen (Ax, ■ ■ ■, A„, F) is an element of <W. But obviously (A x, • ■ •, A„,F)

is an upper bound for the linearly ordered set sé. Zorn's lemma yields the existence

of a maximal element in °U.

If (Ay, •••,Att, F) is such a maximal element then we shall prove that At(F) is a

cofinal set in E for each 1 ^ ¿ z% n and thus finish the proof of this theorem.

Let us first notice that either A¡(F) is cofinal in £ for each 1 ^ ¿ ̂  n or A¿(F)

is not cofinal in E for any 1 ^ ¿ ̂  n. This follows from the fact that Aj(F), A¡(F) are

cofinal in each other.

Suppose now that A¡(F) are not cofinal in E for any l^ign. Then there

exist ax,---,an in E such that e ^ a¡ for  l^i^n implies e $ {J"=yA¡(F).
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If ex ^ a¡ for 1 ^ i ^ n then we can construct as above a sequence of distinct

elements et < e2 < ••• < en^x < «„••■ and since A¡(F) are cofinal in £ it follows

that e¡$f (otherwise let ekeF; then there is an ee At(F) such that e^ek which

cannot be).

We define now £* = £ u {e¡; i ^ 1} and

¿fCO = 4COfor/inF,

^*(eJ)=^,°(eJ) = e0-1)„+i;

see (4). (4*, • ••,/!* £*) is an element of °U and obviously

(A*x,-,A*,F*)>(Ax,-,An,F)

(and the sides do not equal), which cannot be since (Ax, •••,A„,F) was maximal.

Thus AX(F),---,A„(F) are all cofinal in £ and disjoint.

We will prove now the main theorem of this paper :

Theorem 1. Let G be a semigroup such that dim Ml(G) = n and dim Mr(G)

= m where 0 < m,n < co . Then m = n = 1, M/(G) = Mr(G) c ß/i(G) and G

contains a finite group which is a two-sided ideal (and therefore a minimal

right ideal and a minimal left ideal).

Proof. If (r) is the relation of Definition 1(a) then by Lemma 3, G = G/(r)

is a finite group whose elements will be e,äx,---,äk-x, where ë is the identity

element and {e,ax,---,ak^x} c G is a set of fixed representatives all over this

proof.

We have to remember that the elements of G are also subsets of G. If á¡ e G then

á¡~x will be inverse of á¡ in the finite group G. Fix now i and let a be some element

of ä^1 <= G.

Then we can write when looking upon ë as a subset of G and \-¿ as belonging to

m(G) that

Ui(s) = Hag) ̂  Hi)

since if g e ät then ög = âog= äj1 o a¡ = ë and thus agree (see R. Thibault's

lecture in [11]) which implies equality of both sides. While if g£ á¡ then the right

side is zero while the left one non-negative. Thus if <p e Ml(G) n Mr(G) then :

<KU) = <HU¿) ^ «I*).

If now b e á¡ then

hHs) = H°g) ̂  h(g)

since for geë(=G we have bg = b o g = ät o ë = á¡ and thus fcg e a¡. Therefore

Ma) - « W è «i5)
and thus



1964] A THEOREM ON AMENABLE SEMIGROUPS 375

4>(ë) = <b(i,) = <t>(i-a) = ft®.

But ë,âx,"',âk-t are n disjoint subsets of G whose union is G (any geG is (r)

equivalent to some at or e). Therefore

1 = <p(G) = (¡)(ë) + <p(äx) + ■■■ + <Kâ*-i) = k <p(e)

which shows that (¡>(ë) =\/\k> 0.

But ë c G is a subsemigroup since if a, b e ë then ab = äob = èoë = ë, i.e.,

abeë.

By applying Corollary 2 we get that 0 < dim Ml(ë) ^ n and 0 < dim Mr(ë) ^ m.

Let now a, beë, then a(r)b and thus there is a c e G such that ac = fee. Butif

cea'j for some i and then if d e of' we have acd=bed and cd=co d= aloâi~1 = ë

which shows that cd e ë. Thus ë is a subsemigroup of G which has the property

that for any a,beë there is fee such that af = bf.

We claim now that it is sufficient, in order to finish the proof of our theorem,

to show that ë contains an element e0 with the property : for any d e ë with d =£ e0

one has also de0 = e0. Let us assume that we have proved already its existence.

Then if a e G then a e ë or a e a¡ for some 1 ̂  i ^ k — 1. If a e ë and a ^ c0 then

ae0 = e0 which implies aeo — eoeo- If [eo] wiH denote the subsemigroup generated

by e0 e G then this equality means that a is in the same left coset of G with respect

to [e0] as e0. If now a e á¡ then there is some ceG such that ac = axc. If c e ë then

either c = e0 and then ae0 = a^o, or c ^ e0 and then ae0 = ace0 = a¡ce0 = a¡e0.

And if c e a, then edeë for any deäf1 and thus if cd = eQ then ae0 = acd

= a,cd = a¡e0 and if cd ^ e0 then ae0 = a[(cd)e0] = (ac)(dc0) = a¡[(cd)e0J

= a^Q. Thus in any case ae0 = ate0 which shows that a is in the same left coset of G

with respect to [e0] as a¡. In other words G contains a countable subsemigroup

which is [e0], such that the set of left cosets of G with respect to [e0], is a finite

set ([e0] is even a finite subsemigroup). We can apply now Corollary (5.5) and

remark (5.3), both of [5], to get that m = n = 1, Ml(G) = Mr(G) c Qlx(G) and

that G contains exactly one finite group which is also a left ideal (and therefore

a minimal left ideal) and exactly one finite group and right ideal (and therefore a

right minimal ideal), which coincide.

Thus in order to finish the proof of our theorem we will prove following theorem

which in fact is the more difficult part of this paper :

Theorem 2.   Let G be a semigroup which satisfies

(a) for each a,beG there is a ceG such that ac = be;

(b) dim Ml(G) = n, 0 < n < co.

Then G has an element e0 with the property that for any geG such that

g ï e0, ge0 = e0.

Proof. Let {gu ■•-,gk} be a finite subset of G. Then there are hu •••,nt_1 in G

such that g¡h¡ = gi+xht for 1 <; i ^ k - 1. But any element h of the right ideal hfi
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satisfies also g¡h = gi+1h. Since G is left amenable (0 < n) the intersection of any

two, and by an easy induction, the intersection of any finite number of right

ideals is nonvoid. Therefore, if hQ e P|î=î hfi    then    gyh0 = g2h0 = g3h0 = •••

= gkh-
Let now {</>„} be a net of finite means in m(G)* which converges strongly to

left invariance (see Day [3, p. 524]). If {gx} is any net of elements in G defined on

the same directed set as {</>„} then {Rgn<¡)x} is also a net of finite means which

converges strongly to left invariance (this is a result of Day [3, p. 526]) since

|| LgRg_<px - H,>. || = || RgLg4>x - Äf>J S ||ÄfB I ||L,*. - K ||

S|M.-*.l->o.

Let us chose the gx s as follows: if (¡>x = Y,k=yßiQlat (k,ßy,---,ßk and ax,---,ak

depend on a) then there is a gx e G such that

«ie?« = Ö2S«=- = a*S« = &«-

For this ga we will have

k k k

Rg(j>x = lAÄf.ßifll = Z/?(ßi.lf. = lAßi6. = ßi»..
i i i

(Since   Rb(Qia)f = (Qh)(r„f) = (rbf)(a)=f(ab) = (Qlab)f  for fem(G)   and

E}ft-1.)
Thus the net of finite means {ßlfcJ is converging strongly to left invariance,

i.e., for any geG

lim I L,ßld. - ßl6. Il = lim II QígK - Q\K \ = lim || ígbm - \K \ = 0
a xa

and the last norm is in ly(G). But || la — lb || = 2 if and only if a # b and

|| io — 16 || = 0 if and only if a = b where these norms are in ly(G). Therefore for

any g0 e G there is an a0 (which depends on g0) such that : a ^ a0 implies

|| lgob — lb || < 2, i.e., || l^ob_ - lb^ || =0. In other words for any g0 e G there is an

<x0 such that

(5) a ^ a0 implies g0bx = bx.

We introduce now a partial order relation in G which will render G a directed

set (according to the definition in Kelley [7, p. 65] (not as in [8, p. 9])). If a, b e G

then b ^ a if either a = b or ab = b.

Let ft ̂  a and c ^ o. If either a = b or b = c then obviously c 2ï a. If neither is

the case then be = c and ab = b which implies that ac = (ab)c = bc*= c and

thus c^a which shows that c^b and b ^ a imply c ^ a.

If now a,beG then there are by (5) a1,a2 such that a ^ at implies abx = ba and

a ^ a2 implies bba = ba. If a0 ^ at and oe0 ̂  a2 then abao = bao and bbao = bao,
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i.e., bxo ̂  a and bxo ̂  b. Thus G is a directed set on which a net (taking values in

m(G)*) can be defined.

We define now the following net of finite means, defined on the direct set G :

{<t>h; heG} where 4>h = Q\h for h eG.

We will prove now that the net of finite means {<ph} converges in norm to left

invariance.

If aeG then for/em(G) we have,

(LMf= UU) - (QhWaf) = (U)(h) =f(ah) = (Qljf = <pjj).
Thus

II AA - <Ph II = II 4>ah - <Ph || = I 61«/, - Q\h || = || I«.* -1» |.

where the last norm is in lx(G). But using (5) there exists <x0 such that a ^ a0

implies af>a = />a. Thus the element bxu = h0 will satisfy ah0 = n0. For any IteG

such that h ^ /i0 we have either that h = h0 and then a/i0 = n0,i.e.,|| laÄ — \h || = 0

or that h0h = n and then

ah = a(h0h) = (ah0) h = h0h = h,

which leads again to || \ah — \h || = 0, which shows that for any a e G there exists

an element h0eG (which depends on this a) such that h^.h0 implies

I La<ph — <ph || = 0. In other words,

(6) lim I La<ph -<ph ||=0 for any a eG.
h

If G as a directed set contains a finite cofinal set {ax,---,ak} then let a0 ^ a¡

for 1 ^ i ^ k. Then {a0} is also a cofinal set in the directed set G. In other words,

a0^g for any geG which means that for any geG either a0 = g orga0 = a0

which shows that a0 is the required element.

We will show now that the assumption that G (as a directed set) does not

contain a finite cofinal set contradicts our assumption that dim MIG = n < co

and thus finish the proof of the theorem.

If d e G is arbitrary then there is a d'e G such that d' > d and d' # d, otherwise

{d} would be a finite cofinal set in G (since for any e e G there is an h 2: e and h ^ d

and therefore d = h^.e) which cannot be since we assume that G has no finite

cofinal subsets. We can apply now Luthar's theorem to get that for any natural

number k there are k cofinal disjoint subsets of G.

Let Cx, •■•,Ck be k cofinal disjoint subsets of G. Then {<ph; h e C¡} as a subnet

of the strongly converging to left invariance net {(¡)h; heG} also converges to

left invariance. Let now 0¡ be a w* cluster point of {<ph; h e C¡) for i = 1,2, ■■•,fc.

(Since the (¡>h are on the unit ball of m(G)* which is w* compact (see [4, p. 424])

there exist such $¡.) Moreover by Day [3, p. 520 (B)], <¡)¡eMl(G).

Now {(¡>h;he C,} <={(¡>e m(G)*; <t>(Ct) = 1 and 4>(CS) = 0 if i ? j} = At since

for heC(,
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MCj) = (ßlO(lc,) = lc,(Ä)=i     X   J"
l 0 if ; ?¿ i.

(The last equality is true since the C/s are disjoint.) A¡ is a w* closed set and

therefore ^¡, as a w* cluster point of {<ph; heC^, belong to it. We have thus

that (¡>y,---,(¡)keMl(G) satisfy

4>¿Cj) = 0 if ¿#j and UCÙ = 1.

If now Z?=i ^«^¡ = 0 then

it t
0 =    Z o^lcj) = I Oj^Cj) = a,..

Thus <j)y,---,(j)ke Ml(G) are linearly independent and dim M 1(G) ̂  fc for any nat-

ural number k which cannot be since by assumption dim Ml(G) = n < oo.

Remarks. If G has a finite group A which is a (minimal) left ideal and (minimal)

right ideal then gA = A and thus A is a (l.i.l.c.) (see [5, §2]). A result of Clifford

(see Lemma (3.1) and Remark (3.1) in [5]) implies that the union of all the finite

groups and (l.i.l.c.) in G is aright minimal ideal (which contains A) and therefore

coincides with A. Thus A is the only finite group and (l.i.l.c.) (a finite group and

left ideal is a minimal left ideal) and by replacing left by right we get that A is

also the only finite group and (r.i.r.c). Thus by Theorem (3.1) and Remarks

(3.2), (3.3) in [5]

dim Ml(G) = dim Mr(G) = 1 and Ml(G) = {<¡>A} = Mr(G)

(for definition of <j>A see [5, §2]). We get thus:

Corollary 3. // G is a semigroup which contains a finite group which is

a left ideal and right ideal then dim Ml(G) = dim Mr(G) = 1 and Ml(G)

= Mr(G) cz Qly(G).

For commutative semigroups one has

Theorem 3. // G is a commutative semigroup then dim Ml(G) can take the

only two values 1 or oo and dim Ml(G) = 1 if and only if G contains a finite

ideal. The second part of this theorem is a result of I. S. Luthar (see [9]).

For proof we have only to remark that commutative semigroups are amenable

(see Day [3, p. 516]) and for this case Ml(G) = Mr(G). (Compare with Corollary

(5.4) in [5] and Remark (2.7) in [6].) From here we get easily the

Theorem 4. // G is a commutative semigroup with no finite ideals then

the algebra m(G)* has infinite dimensional radical. (m(G)* stands here for the

second conjugate algebra of the semigroup algebra ly(G).)
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In [1, p. 853] this theorem is conjectured for commutative groups. For proof

we have only to remark (as in the last footnote in [5]) that if (¡)0 e Ml(G) then

Ml(G) - (¡>0 = {(¡) - <j)0; 4>eMl(G)} is included in Jx = {<t>em(G)*; (¡>(G) = 0,

Lg(j) = 4> for ge G} which is a two-sided ideal satisfying j\=0(see [1, pp. 849-850])

and therefore is included in the radical.

It is interesting to note that if G is an infinite commutative group then as known,

lx(G) is a commutative semisimple algebra (i.e., with zero radical) and though

lx(G) is w* dense in m(G)*, the second conjugate algebra has an infinite dimension-

al radical (i.e., the radical of lx(G) is by no means w* dense in the radical of

m(G)*). This is even true for infinite commutative semigroups with cancellation

(which are semisimple by Hewitt and Zuckerman, Trans. Amer. Math. Soc.

83 (1956), 70-97).
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