A THEOREM ON AMENABLE SEMIGROUPS

BY
EDMOND GRANIRER

Introduction. A semigroup G is said to have a left [right] invariant mean,
in other words is left [right] amenable, if there exists a linear functional ¢ on the
space of all the bounded real functions on G (with the sup. norm), m(G), which
satisfies for each fe m(G) and aeG

1 in£ f@=sé(f) = sugf (9),
) o(f) = o(L.f), [o(f) = ¢(r.f)],

where (I.f)(g) =f(ag) and (r.f)(g) =f(ga).

An invariant mean is a right and left invariant mean. MI(G), [Mr(G)] « m(G)*
will denote the set of left [right] invariant means and dim MIG = n will mean
that the linear manifold spanned by MI(G) € m(G)* is n-dimensional (see [5,
§2]. Q: 1,(G) » m(G)* will denote the natural mapping of the semigroup algebra
1,(G) into m(G)*.

The following is a result of I. S. Luthar (see [9]):

A commutative semigroup G has a unique invariant mean (i.e., dim MI(G) = 1)
if and only if G contains a finite ideal. Luthar’s proof also yields that the unique
invariant mean has to belong to QI,(G).

The main result of this paper is the following:

THEOREM 1. If G is a semigroup with dim MI(G) =n and dim Mr(G)=m
where 0 <m, n < o then:

m=n=1, MI(G) = Mr(G) < Ql(G)

and G contains a finite group which is a two-sided ideal (and therefore a minimal
left and minimal right ideal).

If G contains a finite group which is a two-sided ideal then it is also easily
shown that MI(G) = Mr(G) = Ql,(G) and dim MI(G) = dim Mr(G) = 1.

Theorem 1 implies that for commutative semigroups G only one of the two
cases can occur: either dim MI(G) = 1 or dim MI(G) = oo . It also implies Luthar’s
result.

We have the following remarks to Theorem 1:
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For countable semigroups much more than Theorem 1 is proved by this author
in [5] (see [5, Corollary (5.5) and Remark (3.1)]), i.e.:

If G is a semigroup which satisfies that dim MI(G) = n and Mr(G) # & then
n =1, MI(G) = Mr(G) = Ql,(G) and G contains a finite group which is a two-
sided ideal.

In particular if G is countable and has a unique left invariant mean p, then as
easily seen u is also a right invariant mean, but moreover, by the above theorem, p
is the unique right invariant mean and G contains a finite group which is a two-
sided ideal.

Thus for countable semigroups dim Mr(G) < co is not imposed on G while we
get the same result as in Theorem 1 of this paper. Therefore dim Mr(G) < o is
seemingly a superfluous condition and this author was not yet able to drop it.
A proof of Theorem 1 of this paper without imposing on G the condition
dim Mr(G) < o but only Mr(G) # & would lead to a proof of Theorem A in [5]
without imposing on G to be countable (see [5, §1]), i.e., to a complete characteri-
zation of left amenable semigroups with a finite dimensional set of left invariant
means.

There are in this paper several other results which may have some interest for
their own sake. For instance, it is shown as an immediate consequence of Theorem
1 that for commutative semigroups G, the radical of the second conjugate algebra
m(G)*, is infinite dimensional, if G does not contain finite ideals. If we take G to
be an infinite commutative group then, as known, the group algebra 1,(G) is
semisimple (i.e., has zero radical) and QI,(G) is w* dense in the second conjugate
algebra m(G)* (as defined in [3, p. 526]). Nevertheless one gets that the radical
of m(G)* is infinite dimensional (which is a conjecture made by P. Civin and
B. Yood; see [1, p. 853] and also [5, last page ‘‘added in print’’]).

Some definitions and notations. Let G, = G be a semigroup and subsemigroup
and let n: m(G) » m(G,) such that (nx)(g) = x(g) for ge Gy, 1,: m(G) = m(G)
such that (Ix)(g) = x(ag) for a,geG, I2:m(Gy) » m(G,) such that
(12%)(g) = x(ag) for a,ge G,.

If ¢, yem(G)* then ¢ O Yyem(G)* will be defined for xem(G) by
(¢ @ ¥)(x) = §(y) where y(b) = Y(l,x). (See Day [3, p. 527].)

If A < G and if 1 is the characteristic function of A and if ¢ € m(G)* then we
will write sometimes ¢(A) instead of ¢(1,). We will denote by JI(G) = {¢ € m(G)*;
L,¢ = ¢ for ge G} (which is the set of left invariant elements of G).

For other notations we refer to [5, §2]. We will prove now

LeMMA 1. Let G be a left amenable semigroup and pe MI(G). If Go < G is a
subsemigroup such that u(Gy) > 0 then the linear operator T: m(Gy)* - m(G)*
defined by Tv = pu® (n*v) (see Day [3, p. 533]) satisfies T[MI(G,)] = MI(G) and

| Tvo || 2 (G| vo | for any vo € JUG).
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Proof. If vem(G)* then Tv = pu® (n*v) e JI(G) (see proof of Corollary 2 in
Day [3, p. 529]). If ve m(G,y)* is a mean then so is n*v (see [6, Remark (2.2)])
and therefore so is u ® n*v (if ¢, ¥ are means then so is ¢ © ¥ as is easily seen).
Therefore TLTMI(G,)] = MI(G). Since © is distributive (see [3, p. 527]) and =n*
linear, T is linear.

We will prove now that for any ¢ > 0

| Tvo | 2 #(Go) [ vo | 1.
Let x, e m(G,) be such that
| o || =1 and vo(xg) = || vo || — &> 0.
We define now xem(G) by:
x(g) = x(g) for ge G, and x(g) = 0 for g ¢ G,.
Obviously | x | =1 and:

(3 [Tvol(x) = [1 © (m*vo) ] (x) = p(y)
where y is defined by:
y(h) = [m*vo](Iyx) = vo(nlyx).

By Remark (2.3) in [6] y(h) is constant on left cosets of G with respect to G.
Since G, is left amenable we have for any a,b e Gy, aG, N bG, # I, as easily
seen [5, end of proof of Corollary (5.5)]. This yields the existence of g;, g, in G,
satisfying ag, = bg,. Thus a ~ b (see for instance definition after Lemma (5.1)
in [5]), which shows that G, is included in exactly one coset of G with respect to
G, (let it be H,).

If a¢ H, then aG, NG, = & (otherwise ab = ¢ for b, ¢ in Gyand thus a ~ c,
i.e., aeHy).

We claim now that y(g) = vy(x,)"15,(8).

By the above remark y(g) is constant on H, and if a € G, = H, then:

(@) = vo(nlx) = vo(lgmx) = vo(mx) = vo(Xo)-
(For the second equality see Remark (2.1)in [6]. The third holds since voe JI(G,).)
Thus y(g) = vo(x,) for any ge H,. If now a ¢ H, then we have for g in G,
[=(1:)](8) = (l.x)(g) = x(ag) =0
since aGy N Gy = & (see the definition of x). Therefore
(@) = vo(ml,x) = vo(0) = 0
which proves that

(8) = vo(x0)1g,(8)-
However
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[Tvo](x) = u(y) = ulvo(x0)1g,] = vo(¥o)u(Ho) Z vo(x0)1(Go)
2 w(Go)[|| vo || —¢]
which shows that

" Tv, " = w(Go) " Vo ||,

thus finishing the proof of our lemma.

ReMARK 1. This lemma proves in particular that the above constructed T
when restricted to JI(G,) is a linear, one to one operator which maps MI(G,)
into MI(G). We get thus one part of the

CoROLLARY 1. If G, isa subsemigroup of the left amenable semigroup G with
dim MI(G) < o and if for some pe MI(G), u(Gy) > 0 then:

0 < dim MI(G,) < dim MI(G).

Proof. In order to get the whole corollary we have only to remark that by Day
[3,p. 518], MI(G,) # & which shows that dim MI(G,)> 0. (Notice that 0 ¢ MI(G,)
since the zero function of m(G)* is not a mean.)

REMARK 2. Corollary 1 is also true when ‘‘left amenable’’ is replaced by
“‘right amenable’’ and u e MI(G) is replaced by ue Mr(G).

To see this, and in fact this way one could prove that all the theorems of [5; 6]
remain true when “‘left’’ is replaced by ‘‘right,”’ we define in G a new multipli-
cation, i.e., aAb = ba. This multiplication renders G a semigroup, let us callit G',
which is left amenable if G was right amenable and moreover Mr(G) = MI(G').
Thus if G, = G and pue Mr(G) are such that u(Gy) >0 then pue MI(G') will
satisfy that u(Gg) > 0 where Gy is G, with the new multiplication A. Thus by
Corollary 1

0 < dim Mr(G,) = dim MI(G}) < dim MI(G') = dim Mr(G),

which shows that this remark holds true.
Remark 2 and Corollary 1 prove:

COROLLARY 2. If G is an amenable semigroup such that
dim MI(G) < o0 and dim Mr(G) < oo
and if Gy < G is a subsemigroup such that u(G,) > 0 for some

ue MI(G) N Mr(G)
hen
0 < dim MI(G,) < dim MI(G)
and

0 < dim Mr(G,) < dim Mr(G).
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ReMARK. If G, G are as in Lemma 1 then, T[(MI(G,)] = MI(G) is not
necessarily true. In fact if G = {«g,a,-,,} with o,a; = o; for 0 < i, j < n and if
Go = {0} then dim MI(G,) =1 while dim MI(G) = n + 1 (see examples on the
last page of [6]).

DerFiNiTION 1. (a) If G is a semigroup then we define the following relation
between elements of G: a(r)b if and only if there exists h in G such that ah = bh.

(b) A relation ~ between elements of a semigroup will be called a two-sided
stable equivalence if it is an equivalence and if a ~ b implies ca ~ ¢b and ac ~ bc
for any ce G (see [10, p. 60]).

LeMMA 2. If G is a left amenable semigroup then the relation a(r)b of
Definition 1 (a) is a two-sided stable equivalence.

Proof. G is left amenable and therefore the intersection of any two right
ideals is nonvoid [5, end of proof of Corollary (5.5)]. If a € G, a(r)a holds and if
a,b € G satisfy a(r)b then b(r)a holds as is easily seen. Let now a, b, c € G satisfy
a(r)b and b(r)c; then by definition there are hy, h, in G such that ah, = bh, and
bh,=ch,.But hyG N h,G # J; therefore thereare h’, h”in G suchthat h h'=h,h".
Thus:

(ah)h’ = (bh)h' = b(h h") = b(h,h") = (bh,)h" = (ch,)h" = chh’

which shows that a(r)c. We proved thus that the above relation is an equivalence.

If now a(r)b then ahy = bh, for some hy € G which implies that (ca)h, = (cb)h,,
in other words that ca(#)cb for any ¢ € G. It remains to show that ac(r)bc holds
also for any c e G. By the above ¢G N h,G # &; therefore there are g’, g” such
that c¢g’ = hyg”. Thus acg’ = ahyg” = bhyg”" = bcg’ which shows that ac(r)bc.
This finishes the proof of Lemma 2.

RemARk 3. If (r) is a two-sided stable relation in a semigrcup G, then let
G = G/(r) stand for the set whose elements are all the equivalence classes of
elements of G with respect to the relation (r). Let us define the mapping ¢: G— G
by ¢(a) = a where 4 is the equivalence class which contains the element ae G
(in other notation d = {g € G; g(r)a}). A multiplication between the elements of G
can be defined: Gob = ab, i.e., do b is the (r) equivalence class of elements of G
which contains the element abeG.

It is well known (see [ 10, pp. 361-362]) that the above defined multiplication o
is well defined and associative rendering thus G a semigroup, provided that (r)
is a two-sided stable equivalence relation. The above defined ¢: G—G such that
¢(a) = d is, by its definition, a homomorphism of G onto G. Please remember
that the elements of G are subsets of G and we will write sometimes for some
de G that d = G. The function 1; will then be defined as

1 for gea,

1— =
«8) { 0 for g¢a.
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1; will then denote a function from G to the reals and not from G to the reals.
This way, if e m(G)*, then Y(1;) = y(d) where d < G. This is used in places
where no ambiguity can arise.

LEMMA 3. Let G be an amenable semigroup such that dim Mr(G) < .
Then G = G/(r) (where (r) is the relation of Definition 1 (a)) is a finite group.

Proof. G is amenable and a fortiori left amenable therefore by Lemma 2 the
relation a(r)b, which holds if and only if there exists h € G such that ah = bh,
is a two-sided stable equivalence. By Remark 3 G = G/(r) is a semigroup which
is a homomorphicimage of G. By Luthar’s theorem (for proofsee [ 3, pp. 531-532])
there is a linear operator F*: m(G)* -» m(G)* such that F*[Mr(G)] = Mr(G),
therefore, dim Mr(G) £ dim Mr(G) < co. But G is a semigroup with right can-
cellation since do é=b o ¢ implies ac = be which implies a(ch) = b(ch) for some
h € G, which by definition means that a(r)b, in other words that d = b. But Gas a
homomorphic image of G is right amenable and left amenable (see Day [3,
p. 515(C)]). Thus G is a right amenable semigroup with right cancellation and with
dim Mr(G) = n < co. We can apply Theorem E of [6] (which is true when “‘left”
is replaced by “‘right’”) and get that G is finite and is the union of n finite disjoint
groups each of which is a right ideal. Since G is also left amenable the intersection
of any two right ideals is nonvoid and therefore n =1 and G is a finite group,
which finishes the proof of this lemma.

In what follows a slight generalization of a theorem of I. S. Luthar (see [9,
p. 41, Lemma 1]) will be needed. The proof follows closely Luthar’s proof:

THEOREM OF 1. S. LUTHAR. If E is a directed set such that for any e € E there
exists e’ € E with e’ > e and e’ # e and if E does not contain a finite cofinal
set then E contains n cofinal disjoint sets for any 0 < n < co.

REMARK. It is important to notice that E is a directed set as defined in Kelley
[7,p. 65),i.e.,e, = e, and e; = e, do not necessarily imply e, = e,. The definition
of a directed set in Kothe [8, p. 9], requires that e; > e, and e, = e; implies
e, = e, and the set to which Luthar’s theorem will be applied, in what follows,
will not have in general this property.

Proof. If A E is a finite subset then there is an element ec E, e¢ 4 and
e = a for each aeA.Otherwise each e e E which satisfies e = a for each ae 4
would belong to A. If e€ E is arbitrary, then let fe E be such thatf 2 eand f = a
for each a € A. This implies that f € 4 in other words, that A4 is a cofinal set which
contradicts our assumptions since A4 is finite.

Let now e, € E. There is then some e,€E such thate, = e, and e, # ¢,. If
{ey,---,e;} were chosen as distinct elements which satisfy e;=e; for 1 <j<i
and i =1,2,.--,k then by the above we can choose ¢, ¢ {e;, ---, e} such that
e.+1 = e; for 1 £i < k. We choose this way a sequence of distinct elements {e;}
which satisfies e; <e, <e; <.
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Let now n>1 be a fixed integer and # be the set of all the n + 1 tuples
(Ay,A,,++,A,, F) where F is a subset of E and 4;,1 £i < n, are maps from F to E
which satisfy the following:

(L) A(F)NA(F)= for i #j,1<i,j<n.

(L2) A,(F) and A(F) are cofinal in each other for 1 < i,j <n.

(L3) A(F) is cofinal in F for each 1 £i < n.

We prove now that % is not empty. Let us take F as the sequence {e;} we chose
above and let

©)] A7) = e(j=tymeic
Thus:
AYF) = {ew+1; k=0,1,2,---}, AYF) = {€ns 23 k =0,1,2,---},
<o, Ay (F) = {egnins k= 0,1,2,---}.

It is easy to check that the here chosen n 4+ 1 tuple (AY,---, A2,F) satisfies
conditions (L1), (L2), (L3), which shows that % # (. Let us partial order Z by
(A, Ay, -+, A, F)<(A},43, -, Ay, F') which holds if and only if F = F’ and for
each 1 =i < n, A; is the restriction of 4; to F.

If now o7 = {(A%, -, A5, F*); a€l} is a linearly ordered subset of % then we
define (4;,+,A4,,F) to be: F =| J,; F* and if ee F then ee F* for some « and
then let A(e) = A%(e) for 1<i<n. If ecF’ for some B# o then since
(A3, ++, A%, F®) and (A%,---, 4% FP)are comparable we get that A%(e) = A%(e),
which shows that (4,,---,4,,F) is well defined.

Now A(F)=|J,cr A5(F®), thus A(F)NA(F) # & would imply
Aj(FY) N A%F?) # & for some a, B I. Buteither (4%, -+, A%, F%) = (45, ---, A%, FP)
or (A, A8, F?) = (4%, -, A%, F®) and thus either A%F®) < A%(F®) and then
A(F) N AYF?) # & or A(F®) = AXF*) and then A%(F?) N A%F?) # ¥, both of
which cannot be. This proves that (4,, -+, 4, F) satisfies condition (L1). Moreover
Ay(F), A{F) are cofinal in each other, since if ecA(F) then e € A(F"
but, then there is an e’ € AJ(F*) = A,(F) which satisfies e’ = e. If now ee F then
e F*for some « and thereis an e’ € A5(F*) = A,(F) such that e’ > e, which proves
thattheabove chosen (A4, ---, 4,, F)is an element of %. But obviously (4, ---, 4,,F)
is an upper bound for the linearly ordered set.«Z. Zorn’s lemma yields the existence
of a maximal element in %.

If (44, -, 4,,F) is such a maximal element then we shall prove that A (F) is a
cofinal set in E for each 1 £ i < n and thus finish the proof of this theorem.

Let us first notice that either A,(F) is cofinal in E for each 1 < i £ n or A,(F)
isnot cofinalin E for any 1 < i < n. This follows from the fact that 4 ,(F), A,(F) are
cofinal in each other.

Suppose now that 4,(F) are not cofinal in E for any 1 £i £ n. Then there
exist ay,+-+,a, in E such that e2gq; for 1 Si<n implies e¢ | Ji-,4,(F).
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If e, = a; for 1 £i < n then we can construct as above a sequence of distinct
elements e; <e, <+ <e,_; <e,--- and since 4;(F) are cofinal in F it follows
that ¢;¢ F (otherwise let e, € F; then there is an e € A,(F) such that e = ¢, which
cannot be).

We define now F*=F U{e; i 21} and

Al(f)=A(f)forfin F,
A?(ej)= A?(ej) = €(i—1m+is
see (4). (A%,---, A% F*) is an element of % and obviously
(AL, AL F*) > (44, -+, 4, F)

(and the sides do not equal), which cannot be since (4, -, 4,, F) was maximal.
Thus A4,(F),---,A,(F) are all cofinal in E and disjoint.
We will prove now the main theorem of this paper:

THEOREM 1. Let G be a semigroup such that dim MI(G) = n and dim Mr(G)
=m where 0 <m,n< . Then m=n=1, MI(G) = Mr(G) = Ql,(G) and G
contains a finite group which is a two-sided ideal (and therefore a minimal
right ideal and a minimal left ideal).

Proof. If (r) is the relation of Definition 1(a) then by Lemma 3, G = G/(r)
is a finite group whose elements will be ¢é,4d,,---,d,_,, where é is the identity
element and {e,a,---,a,_;} = G is a set of fixed representatives all over this
proof.

We have to remember that the elements of G are also subsets of G. If d; € G then
a; ! will be inverse of 4, in the finite group G. Fix now i and let a be some element
of ;' < G.

Then we can write when looking upon ¢ as a subset of G and 1; as belonging to
m(G) that

L1:(g) = 1(ag) = 1;(8)

since if ge d;then ag = dog=4; ' 0 d; = é and thus agree (see R. Thibault’s
lecture in [11]) which implies equality of both sides. While if g¢ g; then the right
side is zero while the left one non-negative. Thus if ¢ € MI(G) N Mr(G) then:

o(19) = ¢(1,13) 2 9(13).
If now b € g; then
1:15(8) = 15(bg) 2 1(g)
since for geé = G we have bg=bo g = g, 0é = g; and thus bg € d;. Therefore

é(13) = ¢(l15) =2 ¢(17)
and thus
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B(&) = ¢(13) = ¢(13) = $(d).

But é,d;, -+, 4, are n disjoint subsets of G whose union is G (any ge G is (r)
equivalent to some a; or e). Therefore

1=¢(G) = ¢(&) + P(dy) + - + d(dk-1) = k $(&)

which shows that ¢(¢) = 1/1k > 0.

But é = G is a subsemigroup since if a, b € € then ab=dob=¢oé= é,ie.,
abee.

By applying Corollary 2 we get that 0 < dim MI(¢) < nand 0 < dim Mr(é) £ m.

Let now a, b eé, then a(r)b and thus there is a ¢ € G such that ac = bc. Butif
c e g;forsome iand then if de d; * wehave acd=bcd and cd=¢od=g,04; '=é
which shows that cd e é&. Thus é is a subsemigroup of G which has the property
that for any a, b € é there is f € é such that af = bf.

We claim now that it is sufficient, in order to finish the proof of our theorem,
to show that € contains an element e, with the property: for any d € é with d # ¢,
one has also de, = ¢,. Let us assume that we have proved already its existence.
ThenifaeGthenaecéoraeq;forsome 1 <i<k—1.Ifaeéand a # ¢, then
ae, = ey which implies aeZ = eqe,. If [, ] will denote the subsemigroup generated
by e, € G then this equality means that a is in the same left coset of G with respect
to [eo] as eo. If now a € g; then there is some ¢ € G such that ac = g;c. If c e & then
either ¢ = e, and then ae, = a,e,, or ¢ # ¢, and then ae, = acey, = a;ce, = a;e,.
Andif ced;then cdeé forany ded; ' and thus if cd=e, then ae,=acd
=acd =ae, and if cd#e, then ae,=a[(cd)e,] = (ac)(dey) = a[(cd)eo]
= a,e,. Thus in any case ae, = a,e, which shows that a is in the same left coset of G
with respect to [e,] as a;. In other words G contains a countable subsemigroup
which is [ey], such that the set of left cosets of G with respect to [e,], is a finite
set ([eo] is even a finite subsemigroup). We can apply now Corollary (5.5) and
remark (5.3), both of [5], to get that m = n =1, MI(G) = Mr(G) = QI,(G) and
that G contains exactly one finite group which is also a left ideal (and therefore
a minimal left ideal) and exactly one finite group and right ideal (and therefore a
right minimal ideal), which coincide.

Thus in order to finish the proof of our theorem we will prove following theorem
which in fact is the more difficult part of this paper:

THEOREM 2. Let G be a semigroup which satisfies

(a) for each a,be G there is a ce G such that ac = bc;

(b) dim MI(G)=n, 0<n<co.

Then G has an element e, with the property that for any ge G such that
g # €9, g€y = €.

Proof. Let {gy,--,g;} be a finite subset of G. Then there are hy,--,h;_, in G
such that gh; = g;41h;for 1 £ i < k — 1. But any element h of the right ideal h,G
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satisfies also g;h = g;, 1h. Since G is left amenable (0 < n) the intersection of any
two, and by an easy induction, the intersection of any finite number of right
ideals is nonvoid . Therefore, if hoe (|21 /G then g hg = gyho = g3hg = -
= gxho.

Let now {¢,} be a net of finite means in m(G)* which converges strongly to
left invariance (see Day [3, p. 524]). If {g,} is any net of elements in G defined on
the same directed set as {¢,} then {R, ¢,} is also a net of finite means which
converges strongly to left invariance (this is a result of Day [3, p. 526]) since

" L;R; ¢.— Ry ¢ " = " Ry Lyd, — Rz~¢a" = "Rga "Lxd’a — ¢, "
<] Lega 6. | 0.

Let us chose the g,’s as follows: if ¢, = Xf. 01, (k,By, B and a;,--,a;
depend on «) then there is a g, € G such that

418 =028, = """ =48y = ba'

For this g, we will have

k k k
R, ¢, = ?ﬂikgyela. = ElﬂiQI,,,g~ = >§mu,=Ql,,,.

(Si:lce R (QL)f = (QL)(ref) = (rsf)(a) = f(ab) = (Q1,)f for fem(G) and
1Bi=1)
Thus the net of finite means {Q1, } is converging strongly to left invariance,
i.e., for any geG

lim| L,Q1, — Q1, || =lim| Q1,, —Q1, | =lim| L, —1, =0
a a a

and the last norm is in /,(G). But || 1,—1,| =2 if and only if a # b and
| 1. — 1, | = 0if and only if a = b where these norms are in I,(G). Therefore for
any go€G there is an a, (which depends on g,) such that: a = «, implies
| 1gos. — 15_ || <2,i.€., || 1g05.— 15, | =0. In other words for any g, € G there is an
oo such that

©) a 2 o, implies gob, = b,.

We introduce now a partial order relation in G which will render G a directed
set (according to the definition in Kelley [7, p. 65] (not asin [8, p. 9])). Ifa,be G
then b = a if either a = b or ab = b.

Let b = a and ¢ = b. If either a = b or b = ¢ then obviously ¢ = a. If neither is
the case then bc =c and ab = b which implies that ac = (ab)c = bc = ¢ and
thus ¢ = a which shows that ¢ = b and b = a imply ¢ = a.

If now a, b € G then there are by (5) a;,«, such that « = «, implies ab, = b, and
o = «, implies bb, = b,. If ¢y = «; and &y = a, then ab,, = b,, and bb,, = b,,,



1964] A THEOREM ON AMENABLE SEMIGROUPS 377

i.e., b,, = aand b,, = b. Thus G is a directed set on which a net (taking values in
m(G)*) can be defined.

We define now the following net of finite means, defined on the direct set G:
{#,; he G} where ¢, =Q1, for heG.

We will prove now that the net of finite means {¢,} converges in norm to left
invariance.

If ae G then for fe m(G) we have,

(La)f = b(Laf) = (Q1)) (Lf) = (Lf) (h) = f (ah) = (Qla)f = Pun(f).
Thus
” La(bn - ¢h " = " (bah - ¢’h “ = " Qlah - th " = " lah - lh ",

where the last norm is in /,(G). But using (5) there exists o, such that « = a,
implies ab, = b,. Thus the element b, = h, will satisfy ah, = hy. For any he G
such that h > h, we have either that h = hy and then ah, = hg,i.e.,| 1,,— 1, ] =0
or that hoh = h and then

ah = a(hoh) = (aho)h = hoh = h,

which leads again to || 1,, — 1, | =0, which shows that for any a € G there exists
an element hoeG (which depends on this a) such that h>h, implies
| Lo — ¢4 | =0. In other words,

6) lim || L,¢, — ¢, || =0 for any aeG.
h

If G as a directed set contains a finite cofinal set {a,,---,a,} then let a, > a;
for 1 =i = k. Then {a,} is also a cofinal set in the directed set G. In other words,
a, = g for any ge G which means that for any ge G either ap=g or gay=a,
which shows that a, is the required element.

We will show now that the assumption that G (as a directed set) does not
contain a finite cofinal set contradicts our assumption that dim MIG =n < oo
and thus finish the proof of the theorem.

If d € G is arbitrary then there is a d’ € G such that d’ > d and d’ # d, otherwise
{d} would be a finite cofinal set in G (since for any e€ G thereisan h 2 eand h = d
and therefore d = h = e) which cannot be since we assume that G has no finite
cofinal subsets. We can apply now Luthar’s theorem to get that for any natural
number k there are k cofinal disjoint subsets of G.

Let Cy,--,C, be k cofinal disjoint subsets of G. Then {¢,; h € C;} as a subnet
of the strongly converging to left invariance net {¢,; h € G} also converges to
left invariance. Let now ¢; be a w* cluster point of {¢,; he C)) for i = 1,2,---,k.
(Since the ¢, are on the unit ball of m(G)* which is w* compact (see [4, p. 424])
there exist such ¢;.) Moreover by Day [3, p. 520 (B)], ¢, € MI(G).

Now {¢,; he C;} = {pem(G)*; ¢(C)=1 and ¢(C;)) =0 if i # j} = A, since
for heC,,
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1if j=i,
¢h(Cj) = (th)(lc,) = lc,(h) = .
0if j#i.
(The last equality is true since the C;’s are disjoint.) 4; is a w* closed set and
therefore ¢;, as a w* cluster point of {¢,; he C;}, belong to it. We have thus
that ¢4,---, ¢, € MI(G) satisfy

$(CH=0if i#j and $(C)=1.
Ifnow Xf-; %¢;=0 then

k k
0= X d(lc) = z 4p(C;) = a;.
i=1 i=1

Thus @,, -+, ¢, € MI(G) are linearly independent and dim MI(G) 2 k for any nat-
ural number k which cannot be since by assumption dim MI(G)=n < .

ReMARKS. If G has a finite group A which is a (minimal) left ideal and (minimal)
right ideal then g4 = A and thus 4 is a (l.i.Lc.) (see [5, §2]). A result of Clifford
(see Lemma (3.1) and Remark (3.1) in [5]) implies that the union of all the finite
groups and (L.i.l.c.) in G is a right minimal ideal (which contains 4) and therefore
coincides with A. Thus A is the only finite group and (Li.l.c.) (a finite group and
left ideal is a minimal left ideal) and by replacing left by right we get that A4 is
also the only finite group and (r.i.r.c.). Thus by Theorem (3.1) and Remarks
(3.2), (3.3) in [5]

dim MI(G) = dim Mr(G) = 1 and MI(G) = {¢,} = Mr(G)
(for definition of ¢ see [5, §2]). We get thus:

COROLLARY 3. If G is a semigroup which contains a finite group which is
a left ideal and right ideal then dim MI(G)=dim Mr(G) =1 and MI(G)
= Mr(G) < @l,(G).

For commutative semigroups one has

THEOREM 3. If G is a commutative semigroup then dim MI(G) can take the
only two values 1 or oo and dim MI(G) =1 if and only if G contains a finite
ideal. The second part of this theorem is a result of 1. S. Luthar (see [9]).

For proof we have only to remark that commutative semigroups are amenable
(see Day [3, p. 516]) and for this case MI(G) = Mr(G). (Compare with Corollary
(5.4) in [5] and Remark (2.7) in [6].) From here we get easily the

TuEOREM 4. If G is a commutative semigroup with no finite ideals then
the algebra m(G)* has infinite dimensional radical. (m(G)* stands here for the
second conjugate algebra of the semigroup algebra 1,(G).)
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In [1, p. 853] this theorem is conjectured for commutative groups. For proof
we have only to remark (as in the last footnote in [5]) that if ¢, € MI(G) then
MIG) — ¢o={p — ¢po; ¢ €MIG)} is included in J, = {¢ e m(G)*; ¢(G) =0,
L,¢=¢ for g € G} which is a two-sided ideal satisfying J?=0(see [1, pp. 849-850])
and therefore is included in the radical.

Itis interesting to note that if G is an infinite commutative group then as known,
1,(G) is a commutative semisimple algebra (i.e., with zero radical) and though
1,(G) is w* dense in m(G)*, the second conjugate algebra has an infinite dimension-
al radical (i.e., the radical of I,(G) is by no means w* dense in the radical of
m(G)*). This is even true for infinite commutative semigroups with cancellation
(which are semisimple by Hewitt and Zuckerman, Trans. Amer. Math. Soc.
83 (1956), 70-97).
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