
SOME ASYMPTOTIC FORMULAS
IN THE THEORY OF NUMBERS(')

BY

ECKFORD COHEN

1. Introduction. It is the aim of this paper to generalize, unify, and refine a

number of related but scattered results in asymptotic number theory. Special

cases of the main theorems of the paper yield estimates due to Cesàro [2], Feller

and Tornier [10], Kanold [12], Rényi [13], and the present author [4]. The

method of proof is elementary and is essentially a variant of a method used in an

earlier note [7].

Clearly, every positive integer n has a unique representation of the form

(1.1) n = d2e,      e square-free, d > 0.

If in this relation we place d = Q(n), then Q2(n) is the largest square divisor of n.

Let a denote an arbitrary non-negative real number and let S be any nonvacuous

subset of the set J of positive integers. In Theorem 2.1 we obtain approximations

to the sum

(1.2) B.0c,S)=      I     (—)',     x = l,

with numerous special results deduced as corollaries.

We shall say that a divisor d of n is unitary, written d || n or d*Ô = n, if dô = n,

(d,5) = 1. In §3 we consider the sum B'a(x,S) arising from (1.2) if, in the sum-

mation, Q2(n) is required to be a unitary divisor of n. The main result is con-

tained in Theorem 3.1.

Let the distinct prime factors of n be denoted py, ■■•,pt, and place

(1.3) « = PV   -Prr      0 = 0 if n = l).

The set of integers n for which e¡ = 2 (i = 1, •• , r), that is, the integers with no

simple prime factors, will be denoted by L. Evidently, n is uniquely representable

in the form

(1.4) n = de,       deL, e square-free, (d,e) = 1.

The factor d defined by (1.4) is the largest divisor Q*(n) of n contained in L. If T

is a nonvacuous subset of L, then one may define, analogous to (1.2),
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(1.5) Bt(x,T)=        I      (   "   )".

An estimate for B*(x, T) is proved in Theorem 4.1.

Known results which are deduced as special cases of the theorems discussed

above are listed as follows: Corollaries 2.1.2., 2.3.2, 2.4.2, 2.7.2, 2.8.2, 3.2.4,

4.1.1, 4.2.1, 4.2.2. It will be observed that in the case a = 0, the sums Bx(x,S),

B'Jix,S), and B*(x,T) become enumerative functions of certain sequences of

integers. This special case is given particular emphasis in each of the three problems

considered.

We confine our description of specific results of the paper to a single type that

has recently stimulated interest [1; 11; 13; 16]. Referring to (1.3), let us place

co(n) = r and Q(n) = et + ■■■ + ef. Further, place

(1.6) A(n) = Q(n) - co(n) = A(Q*(n)).

Renyi has proved [13,(3)] that if d* is the asymptotic density of the sequence

of integers n for which A(n) = m, then d* exists for each integer m ^ 0, and

(L7)      .?.*■-? ('-7) (1 + ?b)'   h<2-
where the product is extended over the primes p. A new proof of this result is

given in §4.

We also prove two analogues of (1.7). In particular, let dm denote the density

of the set of integers n such that A(Q2(n)) = m; then, by §2, each dm exists and

(1.8) ÍV"P('7)(U?^)'    |2|<1
Moreover, it is shown (§3) that if d'm represents the density of the set of n for

which A(Q2(n)) = m, where Q2(n) || n, then

<">  .?.«'■-Ci1-7)(1+7-?=*)•   |z|<2-

Remark  1.1. With z = 1 in (1.8) we note that

CO

(1.10) I   dm = l;
m = 0

by (1.7) the corresponding result for d* is also valid (Rényi [13]).

2. Problem I.  Estimates for Bx(x,S). Let ra(n,S) be defined by

(2.1)
K(n,S) =

tmi    ifß(n)GS'

0 if Q(n) t S.
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In particular, r0(n,S) is the characteristic function of the set of integers such that

Ô(n)GS.

With p(n) denoting the Möbius function, we have the following relation which

is basic for this section.

Lemma 2.1.

(2:2) Fx(n,S) =        I      eV(e).
d2e= n;de S

This formula is merely a restatement of the uniqueness of the representation

(1.1). The following known estimate is also required.

Lemma 2.2 [4, Lemma 4.2, r = 1]. If s = 0, then for x ^ 1,

(2.3) I3s(x) = E n°p\n) = \ i^j) + 0(V+1'2).

Define £s(s) to be the sum of the series,

(2.4) Cs(s)=     I      1,

for those sequences S and real numbers s for which the series converges. Note that

£j(s) is the zeta-function tfs), provided s > 1.

We are now ready to prove the main theorem of this section.

Theorem 2.1. If a = 0, then for x = 2,

(2.5) Ba(x,S) = A^J^_jÇs(2a + 2) + 0((x"+1/2 P,(x,S)),

uniformly in S, where

(2.6) Rx(x,S) £     n
-2a-l

provided this sum is nonvacuous; otherwise Ra(x,S) = 1.

Remark 2.1. Evidently, R0(x,S) = 0(1) for those S for which Çs(l) is finite.

Moreover, for arbitrary S,

(2.7) Ra(x,S) = (
0(1) if a > 0,

O(logx)       ifa = 0.

In particular, the estimate, Ra(x,S) = O(logx), is always valid.

Proof. By (1.2), (2.1), (2.3), and Lemma 2.1,

(2.8)       Pa(x,S)=I Fx(n,S)=      1     eV(e)=        S      öafel
«ái í2eíi;deS n¿,/x;neS        \" 1
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Then by Lemma 2.2

BJx,S) = A f iÇi)        I       n"2""2 + 0(x°+1/2R,(x,S))

= ¿(^n)^(2a+2) +0(*"+1 JJ, "_2a"2) + o(^a+1/2^(^s)).

But the summation in the middle term is O(x_ot_1/2 ) and therefore (2.5) results.

We now specialize the theorem to some special sets of integers S. Let H denote

the set of integral squares.

Corollary 2.1. Ifa^O, then

(2.9) BJx,H) = 1 (iÇi) C(4a + 4) + 0(x*+1<2).

Place B0(x,S) = B(x,S) for all S. Since Ç(4) = 7t4/90, one obtains

Corollary 2.1.1 (a = 0).

(2.10) B(x,H) = 7C^ + 0(^/x).

Corollary 2.1.2 (Cesaro [2, §17]). The asymptotic density of the integers n

for which Q(n) is a square is 7t2/15.

Suppose that Sä is the set of all n divisible by the fixed positive integer d.

Corollary 2.2. // a > 0, then

(2.») B^-¿(i£)M + 0(x»'»).

Noting that Sy = J, we have

Corollary   2.2.1 (d = 1). If a > 0, then

(2.12) Ba(x,J) = I (iÇi) «2a + 2) + 0(x«+1'2).

We say that an arithmetical function/(n) has average order £(x) if its summatory

function £(x) ~ x£(x) as x-> oo. Note that Ba(x,J) is the summatory function

of r Jin, J).

Corollary 2.2.2. If a>0, then the ath power of the divisor of n conjugate

to the greatest square divisor of n has average order (6x*ln2)(C(2a + 2)/(a + 1)).

Corollary 2.2.3 (d = a = 1). The conjugate divisor of the greatest square

divisor of n has average order 7t2x/30.

Next we consider the case in which S consists of a single positive integer r,S = r.
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Corollary 2.2. For all a = 0,

uniformly in r _ yjx.

Corollary 2.3.1 (a = 0).

(2.14) B(x,r) = ~ï + 0{y/x).

Corollary 2.3.2 (Kanold [12, (13)]; also cf. Scherk [14, (3)]). The asymp-

totic density of the set of integers n with Q(n) > r is 1 — (6/rc2) Z„sra-2.

Let D denote the sequence of square-free integers. Since the generating function

of D, Z"=1p2(n)/ns = C(s)/C(2s), s > 1, we have

Corollary 2.4. For all a = 0, x = 2,

(2.15) «*,D) = l(iQ|^+(«*'/'"> "/>»•v       '        "y it2 \a + 1 J C(4a +4)        (O^xlogx)      1/a = 0.

Corollary 2.4.1 (a = 0). If x = 2, inen

90x
(2.16) B(x,D) = — + 0(Vx log x).

Corollary 2.4.2 (Cesaro [2, §21]). The asymptotic density of the set of those

n for which Q(n) is square-free is 90/tt4.

Let P denote the set of the primes. Since

(2.17) S   — = 0(loglogx),       x = 3,

we have

Corollary 2.5. If x _ 3, inen

01+1 N 1 in^v1/2+«) i/a>0,

<->   ™-h(£h)*j!ir,+ {%;log log x)     if a = 0.

Corollary 2.5.1 (a = 0). The asymptotic density of the integers for which

Q(n) is prime is equal to

Av_L
it2 p p2

Let {at, •••,aJ} denote an ordered set of s fixed positive integers, s = 0, and let

JV = Ns(a) denote the set of all n of the form n = pi1 ••■pi', where the p¡ are
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distinct primes. In case s = 0, it is understood that N = (1). Then by(2.17)and the

above theorem,

Corollary 2.6. //x^3,

,oim     n,     »n       6 / x'+1 \ r ,»        ^        ( 0(xx + 1'2) if a > 0,(2.19) BJx, N) = —   —-—   C)v(2a + 2) +        v,        ' , / '
7i2\a + l/ (0(y/x(loglogx))       if a = 0,

where t = t(a) denotes the number of l's in the set, ay, •••,as.

Corollary 2.6.1 (a=0). The asymptotic density of the integers n for which

Q(n) e Ns(a) is given by

(2.20) ôs(a) = 4     I
*2P1.,.(p;t-p;02'

w/tere the summation is over all s-tuples of distinct primes, Pi,--,ps, /or wJii'c/i

r/ie numbers, payl---pt* are distinct; if s = 0, r/ie sum is understood to have

the value 1.

Note that Corollary 2.6.1 reduces to Corollary 2.5.1 in case s = 1, at = 1. We

now prove (1.8) as a consequence of (2.20).

Corollary 2.6.2. If dm is defined as in the introduction, then for \z\ < 2,

Proof. By definition of c/m and (2.20)

._A      y y i
m _ tt2              **                   ^        („a   ...na\2'

n      Pi.ps;säO    a,.as\Pyl       P"'>

where for each set of s distinct primes, Pi,---,ps, the numbers ay,---,as range

over all s-tuples of positive integers such that (2ay — 1) + ••• + (2as — 1) = m.

Equivalently,

«¡.=4   E      »      -       »
712  p,.p^oPl-Pl      6,.f>,;&odd    Pjl—P/«'

where the numbers b y, • • •, bs, for each s ^ 0, range o ver all s-tuples of odd positive

integers such that by + ■■• + bs = m. It then follows that

£ v_«,n(i-i-(-i+4+*;--)).
m = o n2V\        P \P      />3     P5 //

from which (2.21) results.

The formula (1.8) follows from (2.21) by virtue of the relation Ç(2) = 6/n2 and

the Euler product representation of Ç(s).
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Let £ denote the set of all n such that <o(n) is even, that is, those n with an even

number of distinct prime factors.

Corollary 2.7. If x = 2, then

(2.22) .At». í^;;»^ i»- >(y.","», ç*>*
\     n2(a + 1)       J {0(^/x\ogx)     i/a = 0,

(2-23) ct=i+n(i-¿-),      4-
p

Proof. It remains to evaluate CE(s), s > 1. We have

n = l:»(n) even    » *  I  i = l   " n = l " 1

= ij«S)+n(i-îP-)) = i(«S)+n(2-Ti^))

-i{M,n(^).na-«}-¥{.*n(.-¿)}.

This proves (2.22).

Corollary 2.7.1 (a = 0). Ifx = 2, inen

Cx
(2.24) P(x, E) - -y + 0( Vx log x),

where C = Cu as defined by (2.23).

Corollary 2.7.2 (Feller and Tornier [10, §12]; also cf. Schoenberg

[15, §10]). The asymptotic density of the sequence of n for which co(Q(n)) is

even is

(2.25) l(1+n(!-A)).

Finally, we consider the case in which S is the set F ofthose n for which Cl(n) is

even. One obtains in this case

Corollary 2.8. Ifx = 2, then

'3C(2a + 2)ca+i\   a+1   ,    (0(xa+1/2) i/a>0,
ox\x,r) =   \

where

(2.26)     Bx(x,F) =  I-2—-,—'-—- )x*Tl +   .        . ,
v      '       «v »   /      ^     7j2(a +1)     y ^GX^xlogx)      t/a = 0,

(2.27) C|»i+«*|,       i=i.
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The proof is similar to that of Corollary 2.7.

Corollary 2.8.1 (a = 0). Ifx ^ 2, then

(2.28) B(x,F) = ^ + 0(Vx log x).

Corollary 2.8.2 (CesÀro [2, §20]). The asymptotic density of the set of n for

which Sl(Q(n)) is even is equal to 7/10.

3. Problem II. Estimates for Bjx,S). Corresponding to (2.1) we define

(3.1) rjn,S) =

0 otherwise.

In case a = 0, TJn, S) reduces to the characteristic function of the sequence

of n for which Q(n) is a unitary divisor of n and Q(n) e S. From (1.1) one obtains

Lemma 3.1.

(3.2) rjn,S) =    2   I       e°p2(e).
d te-n-d e S

We shall also need the following generalization of Lemma 2.2.

Lemma 3.2  [4, Lemma 4.2].  Ifs^O and r is a fixed positive integer, then

(3.3) Ur>s(x)S Z        p2(n)ns=-2%-(^1)+0(9(r)xs+112),
»áx;(ll,r) = l Tl¿\p(r) \   S + 1 /

where 9(r) denotes the number of square-free divisors of r and ip(r) is Dedekind's

\p-function,

(d)ô.(3-4) JJ(r) = r\\(\ + ±)  =    I p:
p\r   \ PI dó=r

Remark 3.1. Note that rj\p(r) = 0(1).

Theorem 3.1. If a ^ 0, then for x k 2,

(3.5) B'Jx,S) = Jj(-^i) Vs(2a + 1) + 0(x*+i<2R'Jx,S)),

where

(3-6) CÁs)=      Î     -Lt,       s>0,
n = l;n6S "TO

and where

(3.7) R'Jx,S)=       T
vx-neSn2ci+1'
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unless the sum is vacuous, in which case Rx(x,S) = 1. The O-constant is inde-

pendent of the set S.

Remark 3.2. Since lnúx0(n)ln = 0(log2x) (cf. [5, (3.4)]),

(3 8Ï RYxS)-í0(1) ifa>0'
(3.8) Ra(x,S)- [OQog2x)        ifa = 0

In addition, if 0(n) is bounded on S, R'0(x,S) = O(logx), while, if S is finite,

R'0(x,S) = O(l).

Proof. By the definition of B'x(x, S) and Lemma 2.1,

(3.9) Bx(x,S)=  S K(n,S)=       £       e"p2(e) =       I     VnJ^\,
n£x d2*e£x;deS n£Jx;neS \"    /

so that by Lemma 3.2 and Remark 3.1,

from which the theorem results.

It is easily verified that for s > 0, t > 0,

Corollary 3.1 (S = J). If x = 2, tñen

«+i \ int^"+ll2

(3.11)     p:(x, J) = A (1^) «2a + 2)/>2.+2 + {«*J ) i/a>0,

x log2 x)     if a = 0.

Place P'(x>S) = B¡,(x,S). Then

Corollary 3.1.1 (a = 0).

(3.12) B'(x,J) = ß'x + 0(Vxlog2x)       (j?' = ß2).

Letting J' denote the set of integers n whose greatest square divisor is unitary,

one obtains

CoROLLARYi 3.1.2. The sequence J' has asymptotic density ß2.

Next we consider the set S consisting of the single integer r.
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Corollary   3.2. For all a ^ 0,

„„« „„     x     6 /xa+1 \   r2*-1       o/x1/2+40(r) \
(3.13) ^.r)-_(_)  _ + 0(^L¿),

uniformly in r ^ ^/x.

Corollary 3.2.1 (a=0). The asymptotic density of the subset of J' consisting

of those nfor which Q(n) = r is 6¡r\p(r)n2.

Let St denote the set of feth powers of the primes, k ^ 1, k fixed. Then

Corollary 3.2.2. For x ^ 3,

(3.H) wSti^fcn)^*
ifk>\,

log log x)     ifk = \.

Proof. This is a consequence of the theorem, in connection with (2.17).

Corollary 3.2.3. The asymptotic density of the set of integers all of whose

prime divisors are simple, with the exception of a single divisor of multiplicity

2k, is

6Z        1
n2~ p*-i(p + l)'

The case k = 1 yields

Corollary 3.2.4 (Rényi [13, (6)]; also cf. [7, (1.1)]). The set of integers

whose prime divisors are all simple, with the exception of a single double

divisor, has asymptotic density,

6S     i
n2 p   P(P + 1) '

Let NJa) be defined as in §2.

Corollary 3.3.   The asymptotic density of the integers n of J' for which

Q(ri) e NJa), is determined by

(3.15) S'Ja)=^   I
K\i,.,P,p2y<»-\py+i)...p2°<-l(Ps+Y)

where the summation satisfies the conditions described in Corollary 2.6.1.

Note that the case s = 1 of this result yields a second proof o ICorollary 3.2.3.

Let now d,'n have the same significance as in the introduction. By Corollary 3.3,

one finds that
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Corollary 3.3.1. If\z\<2,

o,«        .f/^nK^g,-,,))-
The proof is analogous to that of Corollary 2.6.2 and is therefore omitted.

Let E denote the set of n with co(n) even.

Corollary 3.4. The asymptotic density of the set of n contained in J', such

that to(Q(n)) is even, is given by

where ßt is defined by (3.10).

The proof is similar to that of Corollary 2.7.2.

As in §2, let F denote the sequence of n such that ii(n) is even. Analogous to

Corollary 3.4, one may prove

Corollary 3.5. The asymptotic density of the sequence of n for which neJ'

and Q(Q(n)) is even is (5ß' + 2<5')/10, where

''-"('-«FT»)'  *"-n(i+F^T5)-

Remark 3.3. Corollary 3.1.2 also results from the case z = 1 in (1.9), or

equivalently (3.16), by virtue of (1.10) in connection with the following principle:

Let G i, G2, ••• be mutually disjoint sets of integers with densities D(G¡), i _ 1, such

that J = Úr=iG¡ andE?D(G;)=l; if J* S J and T = Uiej.G¡, then D(T)
exists and

D(T)=   XD&J.
ieJ«

4. Problem III. Estimates for B*(x, T). Let L have the meaning of §1 and

suppose that T is a nonvacuous subset of L. We define

(4.1) r,*((i,T) =
{<mJ   "Q'MeZ

0 otherwise.

Evidently, T*(n, T) is the characteristic function of the sequence of n for which

Q*(n) g T. The uniqueness of the factorization (1.4) leads to

Lemma 4.1.

(4.2) r>,T)=       I       e*p2(e).
d*e =n;deT
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Let L(x) denote the enumerative function of L, representing the number of

n ^ x contained in L. It is an elementary fact (cf. [8, §1]) that

(4.3) R(x) = O(Jx).

We now prove

Theorem 4.1. If a ^ 0, then for x Si 2,

(4.4) B,*(x,T) = 1 (£11) C*(a) + 0(x'+1'2Rt(x,T)),

where £*(oc) = Cr(a)> as defined by (3.6), and

(4.5) *.*(*, T)=     I       W
_  »j«+l/2 '

náx;neT  "       '

if this sum is nonvacuous; otherwise, R*(x,T)= 1. T/te O-constant in (4.4) is

no/ dependent upon the set T; moreover, Remark 3.2 is ya//</ nere i/ S is replaced

by T and R'x(x,S) by R*(x, T).

Proof. By Lemma 3.1

(4.6)       Ba*(x,T)= S r?(n,T)= S e*p\e) =      I     "„,«(-),
náx de¿x;deT;(d,e) = l n^x.neT \ n   /

where Ur s is defined as in Lemma 3.2. Application of (3.3) gives

<4,7) ■ I (ïTï) ««« + °('"*'.>.Z..r^r) + ̂ ""XV.r,).

That Ç*(a) is finite for a ^ 0 is evident from the identity [9]

(4.8) S   TT?-?-„eL ^(n)       6

By partial summation and (4.3),

„   na+l I *"* „ot+1   / I    "      „a + 2  / I v«+l/
»>i;«eT   " \n>jc;nsL    " / \ n>x   " / V"1        /

" „>*   «a+3/2  +    \x«+i/2j/ =    \x«+i/2/'

and (4.4) results from (4.7).

The final statement of the theorem concerning R*(x, T) is a consequence of the

same type of argument carried out in detail in [5, §3] and will not be reproduced

here.
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Observe that T*(n,L) is yl(n) where yx(n) is the greatest unitary square-free

divisor of n.

Corollary 4.1 (In case <x= 1, cf. [4, Corollary 4.1.3]). //a>0, then

(4.9) B*x(x,L) = £ y\(n) = A (iÇl j C(« + i) fca + 0(x*+V2 ),

wnere fe,, is defined by

^n(.-^T^r').

The case a = 1 give s

Corollary 4.1.1 (Cohen [4, Corollary 4.1.4]).

(4.11) Iyi(„)=^+0(x3/2)
n^x L

Let N = Ns(a) be defined as in §2 and place B%(x, T) = B*(x, T).

Corollary 4.2. Let a1,---,as be an s-tuple of integers, each > 1. Then for

x^3,

(4.12) B*(x,N) = i^j CN(l) + 0(Vx (log logx)'),

where t is the number o/2's in the set au ■•• ,as.

Proof. By (2.17) and the fact that 6(n) is bounded on N5(a).

Corollary 4.2.1 (Rényi [13, (17)]). The asymptotic density of the integers n

for which Q*(n)eNs(a), where ax, ■■■,as are all > 1, is given by

(4.13) A    I
'   "•-* >î,~1(Pi + l)-J>C,"1(P. + l)

where the summation satisfies the conditions of Corollary 2.6.1.

Corollary 4.2.2 (Rényi [13,(3')]).

<4'14> L*-4n('+öTTT^>)-

The proof is similar to that of Corollary 2.6.2.

One may observe that co(Q(n)) = m(Q*(n)); hence Theorem 3 yields no new

result analogous to Corollary 2.7.2. The corresponding prr blem for the fi-func-

tion, however, has the following solution,
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Corollary 4.3. The set of integers nfor which Q(Q*(n)) is even has asymptotic

density,
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