Differential equations invariant under finite reflection groups
HTML articles powered by AMS MathViewer
- by Robert Steinberg
- Trans. Amer. Math. Soc. 112 (1964), 392-400
- DOI: https://doi.org/10.1090/S0002-9947-1964-0167535-3
- PDF | Request permission
References
- Claude Chevalley, Invariants of finite groups generated by reflections, Amer. J. Math. 77 (1955), 778–782. MR 72877, DOI 10.2307/2372597 E. Fiscker, Über algebraische Modulsysteme und lineare homogene partielle Differentialgleichungen mit konstanten Koeffizienten, J. Reine Angew. Math. 140 (1911), 48-81. L. Flatto, Classes of polynomials characterized by a mean value property, Abstract 588-24, Notices Amer. Math. Soc. 9 (1962), 33.
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI 10.2307/2372387
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- Nathan Jacobson, Lie algebras, Interscience Tracts in Pure and Applied Mathematics, No. 10, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0143793
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274–304. MR 59914, DOI 10.4153/cjm-1954-028-3 Séminaire “Sophus Lie", Ecole Normale Supérieure, Paris, 1955. B. L. van der Waerden, Modern algebra, Vol. 1, Ungar, New York 1949.
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 112 (1964), 392-400
- MSC: Primary 20.75; Secondary 14.18
- DOI: https://doi.org/10.1090/S0002-9947-1964-0167535-3
- MathSciNet review: 0167535