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Given a geometric structure on a manifold M, the group of transformations

of M leaving the structure invariant is often a Lie transformation group(2). In

this report we shall give a historical account of such cases and systematic proofs

of those results. In §1 we summarize known results in the chronological order

and in §2 we show how to derive them from a theorem of Palais. We give also a

self-contained proof of the result of Palais as it is not easy to pick up the proof

from his long paper.

1. A summary of known results.   In 1935, H. Cartan [8] proved:

Theorem A. The group G of holomorphic transformations, with compact-

open topology,of a bounded domain M in C is a Lie transformation group.

Moreover, the isotropy subgroup at each point of M is compact.

His proof may be described as follows. Let cby,cp2,--- (cpk ̂  identity trans-

formation) be a sequence of holomorphic transformations of M converging to the

identity transformation with respect to the compact-open topology. Then there

exist a subsequence {cpkl} and a sequence of positive integers {m¡} such that the

sequence

mi(cpkl(z)-z),       z = (z1,...,z")6C"

converges to a nonzero holomorphic function Ç = ((\ •••,£")• The holomorphic

vector field 1,Ç(d/dz') generates a global 1-parameter group of holomorphic

transformations of M. On the other hand, choose a linear frame u0 of M once

and for all. For each holomorphic transformation cp of M, let cb(u0) be the image

frame. Then cp -> cp(u0) is a one-to-one mapping of G into the bundle of linear

frames of M and its image is closed. From these two facts, Cartan derives

Theorem A.

In 1939, Myers and Steenrod [19] obtained :
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Theorem B. The group I(M) of isometries of a Riemannian manifold M is

a Lie transformation group with respect to the compact-open topology.

Let n = dim M. They proved that, for suitably chosen n + 1 points

x0,Xi, ■■ -,x„ eM, the mapping f(M)->M"+1 = M x ■■■ x M(n 4-1 times) which

sendscb eI(M) into (cb(x0), ^(x1),---,(/)(xn))is one-to-one and that its image is a

closed submanifold of M"+1. Then they show that, with respect to the differentiable

structure thus introduced, I(M) is a Lie group acting differentiably on M.

We should perhaps mention at this point the following result due to van

Dantzig and van der Waerden [10] :

The group of isometries of a connected, locally compact metric space is locally

compact with respect to the compact-open topology.

In 1946, Bochner and Montgomery [5] obtained :

Theorem C. Let G be a locally compact group of differentiable transfor-

mations of class C2 acting effectively on a differentiable manifold M of

class C2. Then G is a Lie transformation group.

Making use of Bochner's result [1] on compact groups of differentiable

transformations, they proved the nonexistence of small subgroups. Following

Cartan's argument, they constructed 1-parameter subgroups. The finite dimen-

sionality of G (which, in Theorems A and B, was a consequence of the fact that

G is imbeddable in a certain manifold) was proved by means of a formula obtained

in their earlier paper [4].

Remark. In [5] they assumed that an element of G which fixes a nonempty

open subset of M is the identity element. This assumption can be removed by

using Bochner's result [1] (cf. the book of Montgomery-Zippin [18, p. 208]).

In 1950, Kuranishi [17] proved the above theorem of Bochner-Montgomery

under the assumption of differentiability of class C1.

As a corollary to Theorem C, Bochner and Montgomery obtained :

Theorem D. The group G of holomorphic transformations of a compact

complex manifold M is a Lie transformation group.

From properties of holomorphic functions, G is easily seen to be locally compact

with respect to the compact-open topology and Theorem C applies.

Later they proved [6] :

Theorem E. The group G of holomorphic transformations of a compact

complex manifold M is a complex Lie group and the action G x M-*M is

holomorphic.

Generalizing the result of Myers and Steenrod, in 1953 Nomizu [21] proved:

Theorem F. Let M be a manifold with an affine connection. Then the group

A(M) of affine transformations of M is a Lie transformation group.
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Working on the base manifold M and its tangent bundle, he proved that A(M)

is locally compact with respect to the compact-open topology, thus reducing the

problem to Theorem C. Originally, he had to assume that the connection is

complete. Later he was able to remove the assumption by considering every

affine transformation cp of M as an isometry on the bundle L(M) of linear frames.

(If 0 = (01) is the canonical form on L(M) and co = (cok) is the connection form

on L(M), then the natural prolongation of cp to L(M) leaves the Riemannian

metric ds2 = S¡(0')2+ "Ej ,k(<°Í)2 invariant.) Thus he reduced the proof of

Theorem F to Theorem B. Independently, Hano and Moritomo [13] were also

successful in removing the assumption of completeness ;they proved thatGis locally

compact, also making use of the Riemannian metric on L(M) constructed above.

In 1954, Kobayashi [14] (see also [15]) proved the following theorem and

derived, as immediate consequence, the result of Myers-Steenrod and that of

Nomizu.

Theorem G. Let M be an n-dimensional manifold with n 1-forms <Xy,---,oin

which are linearly independent at each point of M. Then the group G of trans-

formations of M leaving ay, ••-,a„ invariant is a Lie transformation group.

The proof is similar to, but simpler than, that of Myers-Steenrod's theorem as

the assumption is stronger. He proved that, if x0 is an arbitrary point of M,

then cp -* cb(x0) is a one-to-one mapping of G into M and its image is a closed

submanifold of M and that, with respect to the differentiable structure thus intro-

duced in G, the action is differentiable.

Although Theorem G seems to be a special case of Theorem B, it actually

implies Theorems B and F. Let M be a manifold with an affine connection.

Let 0 = (0') and co = (coJk) be the canonical form and the connection form on

L(M) as before. Then n + n2 1-forms Q\ co{ are linearly independent on the

(n + n2)-dimensional manifold L(M) and the natural prolongation to L(M) of

every affine transformation cp of M leaves these 1-forms invariant. Conversely,

every fibre preserving transformation of L(M) leaving these 1-forms invariant is

the natural prolongation of an affine transformation cp of M. Thus, the group

A(M) of affine transformations of M can be considered as a closed subgroup of

the group of transformations of L(M) leaving these 1-forms invariant. Since the

latter is a Lie transformation group by Theorem G, so is A(M). Theorem B can be

derived similarly by applying Theorem G to the bundle 0(M) of orthonormal

frames of a Riemannian manifold M and to the \-n(n + 1) 1-forms 0', coi, where

lgi^n and 1 -¿j <k _ n. Or, Theorem B can be immediatey derived from

Theorem F.

In 1957, Palais obtained the following general result [23, p. 103] :

Theorem H. Let G be a group of diffeomorphisms of a manifold M. Let S

be the set of all vector fields X on M which generate global 1-parameter groups
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cj>t = exptX of transformations of M such that cj>teG. If S generates a finite-

dimensional Lie algebra, then G is a Lie transformation group and S is the

Lie algebra of G.

The proof of this theorem will be reproduced in §2.

Generalizing Theorem A, Kobayashi [16] proved:

Theorem I. If M is an n-dimensional complex manifold with sufficiently

many square integrable holomorphic n-formas, then the group G of holomorphic

transformations of M is a Lie transformation group and the isotropy subgroup

of G at every point of M is compact.

A holomorphic n-form/ on M is square integrable if

f (V(-1))"2/A/<^.
J M

Let F be the Hubert space consisting of all such n-forms/. By "sufficiently many"

we mean that

(1) At each point xeM, there exists an/e F such that/(z) # 0.

(2) If z1,—>z" is a local coordinate system in a neighborhood of a point xeM,

then, for each y, there exists an

h = h*dzï A— Adz'eF

such that h*(x) = 0 and (dh*/dz3)x + 0.

Let h0,h1,h2, ■■■ be an orthonormal basis for F and set

00

K = K*dz1A- Adz"Adz1 A- Adz"= Z n, A«¡.
i=0

Then the Bergman metric given by

ds 2 =   Z gtfdz'dz",     where gxJt = Ô2 log K*/dz 'ôz",

is invariant by G. It follows that G is a closed subgroup of the group I(M) of

isometries of M and hence is a Lie transformation group by Theorem B.

Recently, Boothby-Kobayashi-Wang [7] obtained the following generalization

of Theorem D.

Theorem J. The automorphism group G of a compact almost complex

manifold M is a Lie transformation group.

They found a system of elliptic partial differential equations satisfied by almost

complex mappings. The result of Douglis-Nirenberg [11] implies that G is locally

compact and hence is a Lie transformation group by Theorem C.

2. Proofs of Theorems A, B, D, E, F, G, H, I and J. We shall proceed in the

following order :
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(1) H->G-+F->B->I->A;

(2) H->J->D->E.
What we actually prove here are Theorem H and the implications H -* G, H -> J

and D -» E. The other implications are either evident or have been explained in §1.

In proving the implication H-+J we make use of Bochner's theorem on the

finite dimensionality of the space of tensor fields satisfying a system of elliptic

partial differential equations on a compact manifold. Otherwise, our proofs are

self-contained.

Proof of Theorem H. Let g* be the Lie algebra generated by S and let G

be the connected, simply connected Lie group generated by g*. For each X e g*,

denote by exp tX the 1-parameter subgroup of G generated by X.

Lemma  1. If X, YeS, then (ad(expX))YeS.

Proof of Lemma 1.   Set Z = (ad(exp X)) Y. Then

exp iZ = (exp X) (exp t Y) (exp X) ~ \

which shows that (exp rZ)x is defined for all x e M and all t, — oo < / < oo.

Lemma 2. S spans g*.

Proof of Lemma 2. Let V be the linear subspace of g* spanned by S. By

Lemma 1, we have (ad(expS))S c S and, hence, (ad(expS))V <= V. Since S

generates g*, exp S generates G. Hence, (ad G)V <= V. In particular,

(ad(expF))F <= V. This implies that \V,V\ c V, i.e., F is a subalgebra of g*.

Since V contains S, V generates g* It follows that V — g*.

Lemma 3. S = g*.

Proof of Lemma 3.  Let Xï,--,XreS be a basis for g*. Then the mapping

g* a 2VXi->(expa1X1)-(expa%)eG"

gives a diffeomorphism of a neighborhood N of 0 in g* onto a neighborhood U

of the identity in G. Let Teg*. Let ¿ be a positive number such that exprY e U

for 111 < ô. Then, for each t with 11 \ < «5, there exists a unique Xa'iO.X'j e N such

that

expíT =(expa1(í)X1)-"(expar(í)Xr).

The action of expiY on M is therefore given by

(expiy)x = (expa1(0^i)"-(expar(i)A'r)x      forxeMand |i| <ô.

This shows that every element Y of g* generates a global 1-parameter group of

transformations of M, thus completing the proof of Lemma 3.
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Let G* be the Lie transformation group acting on M generated by g*. Since

every element of g* generates a global 1-parameter group of transformations

of M by Lemma 3, G* exists. Since G* is connected, the assumption in Theorem H

implies that G*<=G. Let cpeG and let \¡/t be a 1-parameter subgroup of G*.

Then cp ■ ip, • cb~1 is a 1-parameter group of transformations of M contained in G.

From the construction of G* it follows that this 1-parameter group is a subgroup

of G*. Since G* is generated by its 1-parameter subgroups, this implies that G* is

a normal subgroup of G. Each cpeG defines an automorphism A$:G* ->G* by

A^ip) = </> • \p, • cp ~1. Since A^ sends every 1-parameter subgroup of G* into

a 1-parameter subgroup of G*, it is continuous (cf. Chevalley's book [9, p. 128]).

Lemma. Let G be a group and G* a topological group which is contained in

G as a normal subgroup. If A^.G* -» G* is continuous for each cpeG, then there

exists a unique topology on G which makes G* open in G.

Proof of lemma. If {V} is the system of open neighborhoods of the identity

in G*, we take {cb(V)} as the system of open neighborhoods of cp e G in G. It is

a trivial matter to verify that G* is open in G with respect to the topology thus

defined in G. The uniqueness of such a topology is also evident.

This lemma applied to our case, we have a topological group G and a normal

subgroup G* which is a connected Lie group. Thus G* is the connected component

of the identity of G. In an obvious manner, we introduce a differentiable structure

in G. It is a routine matter to verify that G is a Lie group and that the differ-

entiability of the action G* x M ^ M implies the differentiability of the action

G x M^M. This completes the proof of Theorem H.

Proof of Theorem G. Let Xy,---,X„ be the vector fields on M defined by

ai(Xj) = ôij, so that Xy,---,X„ are linearly independent at each point of M.

A transformation cp of M leaves a j, • • •, or„ invariant if and only if it leaves Xy, • • •, X„

invariant. Let Y be a vector field on M which generates a 1-parameter group of

global transformations of M. This 1-parameter group leaves Xy,---,Xn invariant

if and only if [T,.Xj] = 0 for j = 1, —,n. Let a be the set of all vector fields Y

on M such that [Y,X,] = 0 for j = 1, •••,«. We see that a is a Lie algebra. In view

of Theoreni H, it is sufficient to show that dim a is finite. Let Y be any nonzero

element of a. We shall show that the vector field Y vanishes nowhere on M. Let

Zy be the set of zeros of Y, i.e., ZY = {xeM; Yx = 0}. Evidently, ZY is closed

in M. For each set of n numbers a1, •••,«", we set X= 2Z?=yUlX¡ and let

cpt = exp tX be the local transformations of M generated by X. For each point

x e Zy, {cpt(x) ; | «' | < <5, | í | < 1} covers a neighborhood U of x, where Ô is a small

positive number. Since [Y, Lu'Z,] = 0, cbt leaves Y invariant. Hence

'PÁJx) - Y*t (x) = 0. This means that Y vanishes at every point of U. Thus, Zr is

open in M. The connectedness of M implies that Y is nonzero at every point of M.

Therefore, for any point x of M, the mapping a -> TX(M) (the tangent space
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of M at x) which sends Y into Yx is one-to-one. In particular, we have

dim a f* dim M = n. This completes the proof of Theorem G.

Proof of Theorem J.   We first state a special case of a theorem of Bochner [3].

Theorem of Bochner. Let S be a space of vector fields X on a compact

manifold M such that, for every point of M, there is a system of elliptic partial

differential equations

defined in a neighborhood ofthat point and satisfied by all

Then the dimension of S is finite.

We first recall the definition of the torsion tensor T and the curvature tensor R

of an affine connection in terms of covariant differentiation V. For any vector

fields  X, Y and Z on M, we have [22] :

(1) T(X,Y)= VXY- VyX-[X,Yl

(2)R(X,Y) =[VZ, Vy]Z- VtxnZ.
Let M be a manifold with almost complex structure J ; J is a tensor field of type

(1,1) (i.e., contravariant degree 1 and covariant degree 1) or a field of endo-

morphisms such that J2 = — 1. A vector field Zis an infinitesimal automorphism

of the almost complex structure J if and only if

(3) \X,JV] = J([X, V}) for all vector fields V.

Consider a hermitian metric g on M ; it is a Riemannian metric such that

g(JV,JV) = g(V, V) for all vector fields V and V. Consider an affine connection

on M such that Vg = 0 and VJ = 0; such a connection can always be obtained

by considering a connection in the bundle of unitary frames over M.

We shall now construct a system of elliptic partial differential equations satisfied

by all infinitesimal automorphisms X of J. From (1) we obtain

(4) IX,JV]= VX(JV)- WJrX-T(X,JV),
(5) J(IX, V]) = J( VXV) - J( S/yX) - J(T(X, V)),

where X and V axe arbitrary. Since VJ = 0, VX(JV) = J( VXV). By (3), (4) and

(5), we see that X is an infinitesimal automorphism of J if and only if we have

(6) WjyX - J( WVX) + B(V, X) for all vector fields V,

where B is the tensor field of type (1,2) defined by

B(V,X) = T(X,JV) - J(T(X, V)).

Applying J to (6), we see that (6) is equivalent to the following :
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(7) VVX + J( VjyX) + J(B(V, X)) = 0 for all vector fields V.

Apply VK to (6) and VJV to (7). We then see that if X is an infinitesimal auto-

morphism of J, then

(8) VK- VVX + J(VV- VjVX)+ Vr(J(B(V,X))) = 0 for all vector fields V,

(9) VJV • VjyX - J(VjV ■ VyX) + VjV(B(V,X)) = 0 for all vector fields V.

Since we have (cf. (2)) :

(VKVJK- VjyVv)X = R(V,JV)X+ V,JK]X,

by adding (8) and (9) we obtain :

(10) (VF- Vv+ VjV- Vjy)X + ■■■ =0 for all vector fields V, where the

dots •■• indicate terms not involving second derivatives of X. Locally, we choose

vector fields Vy,---,V„ such that Vy,Vu,JV1,—,JVn are orthonormal. Apply (10)

to each F¡ and then sum over i = 1, • ■ •, n. Then we have a system of elliptic partial

differential equations satisfied by all infinitesimal automorphisms X of J.

By Bochner's theorem, if M is compact, the Lie algebra of infinitesimal auto-

morphisms X of J is finite-dimensional. By Theorem H, the group of automor-

phisms of a compact complex manifold M is a Lie transformation group.

Proof of Theorem E. Let M be a compact complex manifold. Then the Lie

algebra of holomorphic vector fields is precisely the Lie algebra of infinitesimal

automorphisms of the complex structure J. Since M is compact, every vector

field on M generates a 1-parameter group of global transformations of M. Let

G* be the Lie transformation group of M generated by the Lie algebra of all

holomorphic vector fields of M. Then G* is obviously a complex Lie group and

the group action G* x M -* M is holomorphic. From the proof of Theorem H, it

follows that the group G of holomorphic transformations of M is a complex

Lie group whose identity component is G* and that the group action G x M-* M

s also holomorphic.

3. Concluding remarks. 1. In Theorem G, the dimension of the group G is at

most n=dim M, and when this maximum is attained, G can be identified with M.

In Theorem F, the dimension of the group A(M) is at most n + n2, and when

this maximum is attained, M is an affine space. Similarly, in Theorem B, the

dimension of the group I(M) is not greater than %n(n + 1), and when this maximum

is attained M is either a simply connected complete space of constant curvature

or a real projective space (with constant positive curvature). In Theorem A or

Theorem I, the group G attains the maximum dimension n(n + 2) only when M

is a simply connected, complete Kaehler manifold of constant negative holomor-

phic curvature. On the other hand, in Theorem D and Theorem J, the maximum

dimension of G is not known. It is reasonable to conjecture that the maximum is

2n(n + 2) and is attained only when M is a complex projective space.

2. In the case of a bounded domain in C, if X is an infinitesimal automorphism

which generates a 1-parameter group of global transformations of M, then JX does
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not generate a 1-parameter group of glo ba /transformations of M. This explains

why no complex Lie group acts holomorphically on a bounded domain of C„

(see[8;16]).

3. Given an almost complex structure J, let N he the tensor field of type (1,2)

defined by

N(X, Y) = [X, Y] + J({JX, Y]) + J([X,JY~¡) - [JX,JYl

where X and Y are arbitrary vector fields on M. By a theorem of Newlander-

Nirenberg [20], N = 0 if and only if J comes from a complex structure. From (3)

in the proof of Theorem I, it follows that, given a vector field X on M, bothZ and

JX axe infinitesimal automorphisms of the almost complex structure J if and only

if N(X, V) = 0 for all vector fields V on M.

It follows that if G is a complex Lie group acting transitively on an almost

complex manifold M in such a way that the action G x M -> M is almost complex,

then M is actually a complex manifold. This shows that Theorem E cannot be

generalized to almost complex manifolds.

4. The system of elliptic partial differential equations obtained in the proof

of Theorem J can be explicitly expressed in terms of the metric tensor, the tensor

J, the torsion T and the curvature R (of the affine connection we used). When M

is a Kaehler manifold, it reduces to the following equation of Bochner [2] :

igjke.Uk+ ir^j=o.
j,k j

Yano [25] proved that, for a compact Kaehler manifold, every solution of the

above equation of Bochner is necessarily an infinitesimal holomorphic trans-

formation. It seems difficult to generalize Yano's result to our case.

5. In this report, by "an isometry of a Riemannian manifold" we meant a

diffeomorphism of the manifold which preserves the metric tensor. The distance

between two points x and y of a Riemannian manifold M is defined to be the

infimum of the arc-lengths of all piecewise differentiable curves joining x and y.

It is known [19] (see also [24]) that a mapping of M into itself which preserves

distance is necessarily a diffeomorphism and preserves the metric tensor.

6. Theorem F can be generalized to conformai connections, projective con-

nections and, more generally, to any Cartan connection in the sense of Ehresmann

since each Cartan connection defines an absolute parallelism in the principal

fibre bundle considered [12], [15].
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