On Gaussian measures equivalent to Wiener measure
HTML articles powered by AMS MathViewer
- by Dale E. Varberg
- Trans. Amer. Math. Soc. 113 (1964), 262-273
- DOI: https://doi.org/10.1090/S0002-9947-1964-0165066-8
- PDF | Request permission
References
- Glen Baxter, A strong limit theorem for Gaussian processes, Proc. Amer. Math. Soc. 7 (1956), 522–527. MR 90920, DOI 10.1090/S0002-9939-1956-0090920-6
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- Gopinath Kallianpur and Hiroshi Oodaira, The equivalence and singularity of Gaussian measures, Proc. Sympos. Time Series Analysis (Brown Univ., 1962) Wiley, New York, 1963, pp. 279–291. MR 0149527
- Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
- Dale E. Varberg, On equivalence of Gaussian measures, Pacific J. Math. 11 (1961), 751–762. MR 126861
- D. A. Woodward, A general class of linear transformations of Wiener integrals, Trans. Amer. Math. Soc. 100 (1961), 459–480. MR 131163, DOI 10.1090/S0002-9947-1961-0131163-3
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 113 (1964), 262-273
- MSC: Primary 28.46
- DOI: https://doi.org/10.1090/S0002-9947-1964-0165066-8
- MathSciNet review: 0165066