Unbounded normal operators in Hilbert space
Author:
S. Kaniel
Journal:
Trans. Amer. Math. Soc. 113 (1964), 488-511
MSC:
Primary 47.40
DOI:
https://doi.org/10.1090/S0002-9947-1964-0169057-2
MathSciNet review:
0169057
Full-text PDF
References | Similar Articles | Additional Information
- [1] Peter D. Lax, On Cauchy’s problem for hyperbolic equations and the differentiability of solutions of elliptic equations, Comm. Pure Appl. Math. 8 (1955), 615–633. MR 0078558, https://doi.org/10.1002/cpa.3160080411
- [2] Lars Hörmander, On the theory of general partial differential operators, Acta Math. 94 (1955), 161–248. MR 0076151, https://doi.org/10.1007/BF02392492
- [3] N. I. Achieser and I. M. Glasmann, Theorie der linearen Operatoren im Hilbert-Raum, Akademie-Verlag, Berlin, 1954 (German). MR 0066560
- [4] G. C. Rota, Extension theory of differential operators. I, Comm. Pure Appl. Math. 11 (1958), 23–65. MR 0096852, https://doi.org/10.1002/cpa.3160110103
- [5] I. C. Gohberg and M. G. Kreĭn, Systems of integral equations on a half line with kernels depending on the difference of arguments, Amer. Math. Soc. Transl. (2) 14 (1960), 217–287. MR 0113114
- [6] Frigyes Riesz and Béla Sz.-Nagy, Functional analysis, Frederick Ungar Publishing Co., New York, 1955. Translated by Leo F. Boron. MR 0071727
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.40
Retrieve articles in all journals with MSC: 47.40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1964-0169057-2
Article copyright:
© Copyright 1964
American Mathematical Society