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This work stems from the study of a special aspect of the problem of deter-

mining all topologies on the algebra CiX), of all real-valued continuous functions

on a topological space X. Specifically, we are interested in the following question,

posed by M. Henriksen [4].

(I) Can CiX) be topologized as an algebra in such a manner that every maximal

ideal is closed?

We are able to settle this question completely only in certain special cases

(see §1). However, we do show that the existence of such topologies is equivalent

to the existence of (Hausdorff) algebra topologies on each of the residue class

fields CiX)/M. Thus we are led to the general question, which occupies the main

portion of this paper, namely:

(II) Let (k,3~) be a topological field and let K be an extension field of fc. Does

there exist a ring topology 3~K for K such that 3~K | fc £ S~1

The attack on this question splits naturally into two cases : (a) K a purely

transcendental extension of fc, and (b) K an algebraic extension of fc. In neither

case are we able to offer a complete solution. In §2, however, using an extension

of a technique employed by Williamson [7], we are able to provide an affirmative

answer to (a) in the case where fc is locally compact. An interesting by-product

of this construction is an example of an additively generated field which is not a

subfield of the quaternion field. In §3 we provide an affirmative answer to (b),

under the restrictions that the degree of extension be at most countable and that

the underlying field fc be locally bounded.

1. The role of the residue class fields. We are able to simplify the problem of

seeking algebra topologies on C(Z) by reducing it to that of finding algebra

topologies on extension fields of the real field R. Explicitly, we have:

1.1. Proposition. Let X be an arbitrary topological space. The algebra

CiX) admits an algebra topology having all maximal ideals closed if and only if,

Presented to the Society, October 21, 1962; received by the editors October 25, 1962.

(!) This work has been supported in part by the National Science Foundation under

contract NSF G-19859. This material is part of a dissertation written under the supervision of

Professor F. W. Anderson.

397

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



398 L. A. HINRICHS [December

for each maximal ideal M, the residue class field CiX)/M admits a iHausdorff)

algebra topology.

Proof. For each maximal ideal M, let nM he the natural homomorphism of

CiX) onto C{X)/M. If each residue class field C{X)/M admits a (Hausdorff)

algebra topology 3~u, then the weak topology on CiX) determined by the family

{nM} is an algebra topology. Since J~M is Hausdorff, M is closed in the weak

topology. Moreover, since CiX) is semi-simple, {0} is the intersection of all

maximal ideals and hence the weak topology is Hausdorff.

Conversely, if CiX) admits an algebra topology having all maximal ideals

closed, then the quotient topology on each residue class field is an algebra topology.

Since each maximal ideal M is closed, the quotient topology on CiX)/M is

Hausdorff.

Although the above result was stated for algebra topologies it is clear that

"order-convex algebra," "locally-convex algebra," or "algebra with continuous

inversion" can be substituted for "algebra".

The algebra CiX) is said to be pseudo-compact in case every/e CiX) is bounded.

It is well known that when X is pseudo-compact, the norm || || defined by

¡/1 = supIeX |/(x) | defines an algebra topology having most of the properties

that one might desire. The following theorem shows that if X is not pseudo-

compact many of these properties are unattainable for an algebra topology on

CiX).

1.2. Theorem. For a topological space X the following statements are equiv-

alent.

(i)   X is pseudo-compact.

(ii) C(X) admits an order-convex algebra topology having the property that

every maximal ideal is closed.

(iii) CiX) admits an algebra topology in which the units form an open subset.

(iv) CiX) admits a locally-convex algebra topology having the property

that every maximal ideal is closed and inversion is continuous where defined.

Proof. If X is pseudo-compact, then the usual norm || || defines an algebra

topology satisfying (ii), (iii) and (iv). To see the reverse implications suppose that

X is not pseudo-compact. Then there exists a hyper-real residue class field, say

FM=CiX)/M,cf. [3, p. 71].
To see that (ii) implies (i), suppose that C(X) admits an order-convex algebra

topology having all maximal ideals closed. Then the quotient topology on TMis an

order-convex Hausdorff algebra topology. This is impossible since in the presence

of infinitely small elements, an order-convex algebra topology cannot be Haus-

dorff.
To see that (iii) implies (i), suppose that !T is a topology for C(X) satisfying (iii),

FM is a hyper-real residue class field and 3~M is the quotient topology. In view of

Proposition 1.1, STM is a locally-convex field topology for FM.
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By a well-known theorem of Arens [1], FM must be the real or complex field.

Since FM is a totally ordered field properly containing the real field, it is not

either of these.

To complete the proof we suppose that F is an algebra topology for CiX) in

which the set of units is open. Let Vbea basis for the neighborhood system of

zero and let a be a positive real number. We claim that there exists Kef such

that ||/1| <x for every feV. Suppose false, then for each integer n and each

Uef" there exists fe U and xeX such that |/(x) | > nx. For 6 a positive real

number, set Vt = {a e R ; \ a | ^ e}. Hence, for each e > 0, and lief there exists

feVc- U and xeX such that/(x) = — x. Let T be arbitrary in "V. Since9~is an

algebra topology there exists e > 0, Uef such that Vt ■ U S T. Thus -x+T

contains a nonunit, contrary to the hypothesis that the set of units is open. Thus

5" is smaller than the norm topology. It is clear that no such topology can be an

algebra topology if X is not pseudo-compact.

2. Purely transcendental extensions. The literature dealing with question (II)

is quite meager. Irving Kaplansky in [5] poses the question of whether or not any

proper extension field of the complex field admits a complex algebra topology.

This question is answered in the affirmative by Williamson in [7]. He demonstrates

the existence of at least two distinct complex algebra topologies on a simple

transcendental extension of the complex field. The method used hereis a gene-

ralization of the procedure used by Williamson in [7].

Let Kbea purely transcendental extension of a locally-compact field fc. Let A

be a compact neighborhood of zero and pk a Haar measure for A such that

pAA) = 1. Finally, let T be a transcendence base for K over fc and set X = AT.

Then the polynomial ring fc[T] has a natural representation as the ring fc[2f] of

polynomial functions mapping X — A1 into fc. This in turn has a natural extension

to an isomorphism mapping the field K of quotients of fc[T] onto the field of

rational functions mapping X into fc. We will topologise K by defining a topology

on the field kiX) of rational functions mapping X into fc.

Let p be the product pt-measure on X and let "V be a basis for the neighborhood

system of zero in fc, consisting of symmetric, compact, closed sets. For V e"f

and h e fc(X), define p(n, V) by

pih,V) = p{xeX;  Kx)iV}.

Let Jf be the collection of all sets of the form

Niv,s) = {hekiX);  pih,V)<e},

where V ef and e is a positive real number. We will show that -^defines a field

topology for fc(X), which extends the topology on fc.

To see that Jf defines a group topology forfc(Z), let N(V,&)eJf be given.

Then  there exists   W ersuch that   W - W £ V.  Suppose /, g eNiW,e/2).
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Then {xeX;   if- g)ix)$V} £ {xeX; fix)^W}u{xeX; gix)$W}.  Thus

Pif -g, V) Ú Pif, W) + PÍ8, W) < e/2 + s/2 = e.  Consequently

A( W, s/2) - Ni W, s/2) £ A( V, s)

and Jf defines a group topology for kiX).

By a similar argument, it can be seen that if W, V e^with W • W £ V, then

NiW,s/2) ■ NiW,s/2) £ NiV,s). Since the constant functions v e V are in NiV,s),

Jf defines a fc-vector space topology in which multiplication is continuous at zero.

To see that multiplication is continuous everywhere, let f ekiX) and

Niy,s)e3~ he given, Let Df = {xeX; fix) <£ k}. It is easily seen that there

exists a subset U of X, open in the product topology, such that Df £ {7 and

piU) <s/2. Since/is a continuous fc-valued function on the compact set X — U,

f[X — U] is a compact subset of k. Hence, there exists If ersuch that

W-flX-U]<=V. If geNiW,s/2), then {xeX; ifg)ix)¿V} £ {xeX; fix)
tfiX- V]} u {xeX; g(x) ¿ W}. Therefore pifg,'V) ^p(C/) + pig,W) <s.

Thus / • NiW,s/2) £ A(F,e) and consequently multiplication is continuous

everywhere.

To show that inversion is continuous it is sufficient to show that if

O^fekiX) and NiV,s)e3~ are given, there exists NiW,s')ejV such that

[/+A(If,e')]-1£/"1-l- A(F,e). LetO/ = {xeX; fix) = 0 or /(x)^fe}. As

above, there exists an open subset U of X such that Of £ 1/ and p((7) <e/2.

Since/is a continuous fc-valued function on the compact set X— U, L =/[X — t/]

is a compact subset of fc disjoint from zero. Consequently there exists a finite

open cover, say Vx, ■ ■ •, V„, of L such that each V¡ has compact closure disjoint from

zero. Set L' = M"= x V¡, so that L' is a compact neighborhood of L disjoint from

zero. Choose Wxeir such that x + Wx £ L', for every x e L. Since the mapping

a -» a ~' is uniformly continuous on L', there exists Jf2 e T^ such that a,bell and

a-beW2 implies a _1 - b ~1 e V Set If = Wx n W2. If ge fc(X) and x eX such

that g(x) e If = WxnW2 and /(x) e L, then (/ + g)(x), fix) e L and

(/ + g)(x)e W2 so that [(/ + g)(x)]-1 - [/(x)]"1 = [(/ + g)"1 -/-x](x)6 F.

Thus, for gekiX), {xeX; [(/+ g)"1 -f1 ](x)£F} £ {xeX;/(x) £ W}

\j{xeX;fix) 4 L} £ U u {xeX; g(x)£If}. Consequently [/ + A(Jf,e/2)]_1

E/"1+N(7,e). For if geA0f,e/2), then p([(/+ g)"1-/-1]. V) ^ p(t7)

+ p{xeX; g(x)^If} <s/2 + s/2 = s. Thus inversionis continuous.

Finally we note that Jf defines a Hausdorff topology. For if/e Q Jf, then/

vanishes on a dense subset of X and hence/= 0.

The following theorem is a direct consequence of the foregoing construction.

2.1. Theorem. Let ik,^) be a subtopological field of a locally compact field

and let K be a purely transcendental extension field of fc. Then there exists a

field topology 3~K for K such that 3~K\k = £7'.

The topology defined above can be used to provide an example of an additively
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generated field which is not (algebraically) a subfield of the quaternions(2).

A topological field fc is said to be additively generated in case there are no

proper open subgroups; i.e., in case any nonvoid open subset additively generates

the field.

Let T be a set of distinct indeterminants such that the cardinality of T is greater

than the cardinality of the quaternion field. Let R be the real field, let A = ■[ — 1,1],

and let p.R be Lebesgue measure. Let RiX) be the topological field as constructed

above. A basis for the neighborhood system of zero in RiX) consists of all sets

of the form

Nik,s) = {feRiX);p{xeX;\fix)\^ k}<s},

where k and e are positive real numbers.

It is clear that RiX) is not isomorphic to a subfield of the quaternions since the

cardinality of the former is greater thsn that of the latter.

To see that RiX) is additively generated, suppose that Gis an open subgroup

of RiX). Then there exist k, e > 0 such that N(fc,e) ç G. Let/ be an arbitrary

element of RiX). Since/ is almost everywhere finite, there exists a positive real

number m such that p{x 6 X ; ¡fix) | ^ m} < e If n is a positive integer such that

n>mk~1, then (n_1)/eJV(fc,e). For if |(n_1)/(x)| è k, then

|/(x)|^«fc^(mfc_1)fc = m.

Thus/ is in the subgroup generated by JV(fc,e). Since/was arbitrary, G = RiX)

and RiX) is additively generated.

3. Algebraic extensions. In a commutative topological ring a subset A is said

to be bounded in case, for each neighborhood U of zero, there exists a neigh-

borhood V of zero such that V • A s U. A topological ring is said to be

locally boundedin case there exists a basis for the neighborhood system of zero,

consisting of bounded sets.

3.1. Lemma. Let K be a simple algebraic extension ofk. If k is a topological

field, then the Cartesian topology on K, as a finite-dimensional vector space

over fc, is afield topology. Moreover, if k is locally bounded, then the Cartesian

topology on K is locally bounded.

Proof. It is well known that as a vector space over fc, K is, with the Cartesian

topology, a topological vector space. Moreover, we can define multiplication in K

in terms of the basis 1 = X°,X1,—,X". Explicitly, there exist constants miJk,

0 S if, fc^n, such that X*XJ = HkmijkXk and hence

(*) ( laXX ZbjXJ) = I ( I atbjmiJk)xk.
k    \ i,i I

(2) The question of the existence of such fields has been posed by M. Shanks in correspon-

dence.
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Since fc is a topological field and K is a topological vector space over fc, the

mapping

( Z atX\ Z bjXJ\->Z  ( Z atbjmiJk\xk

is continuous from K x K -» K. Moreover, inversion is continuous since if

0¥¡a = Y,¡aiXieK, a-1 = [p(a0,--,aB)] • [í(a0,--,aB)]_1 where p and q are

polynomials in (n + ^-variables and q does not vanish except for a¡= 0.

Finally, to show that the Cartesian topology on K is locally bounded, we will

take as a basis for the neighborhood system of zero in K all sets of the form

UK= JZ atX'eK; a,eU for Ogignl,

where U is a bounded neighborhood of zero in fc. Given two such neighborhoods

UK and VK we choose neighborhoods Vx and V2, of zero in fc, such

that V2-{mljk; 0g ¿J.fcg n} £ Fj and n-V1sV. It follows from (*) that

iVl)K-UKzVK.

In order to prove the main result of this section it is necessary to establish two

technical lemmas. The first is a bound on the coefficients of products in K.

To this end, let K = fc(oe) be a simple algebraic extension of fc and let / = Zf/fX*

be the minimal polynomial of a, of degree n + 1. As in the proof of the last lemma

we will write every element a of K in the form Z"=oûjX'. F°r such an element

aeK, we set Ca = {±a¡; i = 0, •••, n}u{0} and C'a = {ax;i = l,---,n} u{0}.

Finally, we will denote multiplication in fc[X] by a * b and multiplication in K

by a ■ b. Then for a,beK, the product a • ft is defined by the equation

a*b =f*g + a-b,   where degree   a-b^n.

Since, for n <i^ 2n, if* g)¡ — (a * b\, the coefficients of g must satisfy the

n linear equations

yofn+i + yifn+--- +y„-1/2 = (a*b)B+1

yifn+1 + ---+yn-lf3 = ia*b)n + 2

yn-ifn+i=ia*b)2„

in then unknowns y0,---,yB_1. The value of the coefficient determinant is

f"+ j = 1 so gk = I Gik)¡j 1,0 g fc ̂  n -1, where G(fc)i; is the determinant obtained
by replacing the fcth' column of the coefficient determinant by the column

- ia*b)n+x —

- (a * b)2H   _ .
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Thus, each gk is a sum of n! terms; each term of which is a product of (n-1)

factors from Cf and one factor from C'atb. It follows that Cg £ inï)C}~l-C'tttb.

Since C'tt,b^in + 1) \C'aCb U C&-], we have Ce £ (n + «IC^ICJC, U C.C¿].
Finally, since iab)d = ia*b)d — if*g)d we have

(a • b)0 e {a0 ■ b0} + in + 2) CfCg £ Wo} + (« + 2) ! C) [C^Q U CttC'b~\,

and for i = l,--,n

(a • *), 6 (» + 1) [C;C„ u CaC'b] + (n + 2) ! C} [C'„Cb U CaC¿]

£ [in + 2) ! Cf + n + 1] [c;c6 u C.c;].

We have established the following lemma.

3.2. Lemma. Let a, beK. Then, in the above notation, we have the following

bounds for the coefficients of the product

a-b:ia-b)0e{a0- b0} + (n + 2)!CJ[C:C6 u CaC'b-\

and, for i = 1, ••-,«,

(a-6),e[(n + 2)1 Cnf + n + 1] [C;C„u C.CÍ].

If A and B are subsets of K we define a 04, B) by

aiA,B)=ig= IgiXi;g0£^andgi6BforO<i^nj.

3.3. Lemma. Let K be a simple algebraic extension of fc. Let fc be a locally

bounded field and W a basis, for the neighborhood system of zero in k, consisting

of bounded sets. Suppose U, V, M, and W are in °il with V, V 4- V + M £ U.

Then there exists Be^l such that <r(F,B) and <r(F,B) • er(F,B) + ff(B,B) are

contained in oi¡J, W).

Proof. We will use the notation of the previous lemma. Clearly, the sets

(n + 2) ! C} • V and [(n + 2) \C} + n + 1]F are bounded. Let us choose B and B'

in«suchthat B,B' + B'£MrW and B, [(n+2)!Cj-] u[((n-r-2)!C}+n + l)]K-B

£ B'. Then for a, beaiV,B) and ceaiB,B) we have Ca,CbzV and

Cc,C'a,CbeB. From Lemma 3.2 it follows that

ia-b + c)0 = ia- b)0 + c0e {a0b0} + (n + 2) ! C}[C'aCb u C.C'^ + Cc

SV- F + (n + 2)!C}F-B + B£F- V + B + B ^V ■ V + M sU,

and for 1 ̂  i ^ n,

ia-b + c)t= (a • b)t + ct e [(n + 2)\C} + n + 1] \C'aCh u C.CÍ] + Cc

£[(n + 2)!C;+n + l]F-B+B zB + BzW.

Thus we have o-(y,B), aiv,B) • aiv,B) + aiB,B) £ aiV, W) as desired.
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3.4. Theorem. Let K be an algebraic extension of k of countable degree.

Iffc admits a locally bounded field topology ¿F, then K admits a field topology

fKsuch that $~K\k<=.2f.

Proof. In view of Theorem 3.1, it is sufficient to assume that the degree of K

over fc is countably infinite. Let {fc„, n e N} he a sequence of intermediate

fields such that fc0 = fc, kn+x is a proper simple algebraic extension of fc„, and

K = \^)k„. Let 5"0 = y and inductively assume that for each n e N, ¿F„+ x is the

uniform topology on fcB+1 inherited from (fc„,^"B). In view of Theorem 3.1 and

Lemma 3.2, each 3~n is a locally bounded field topology for k„. For each neN

let <W„ he the family of all ^"„-open subsets of k„ containing zero. For subsets

A, B of fc„ let oniA,B) have the obvious interpretation.

We define a family °U of subsets of K by U e °U if and only if

(i)   U r\k„e<%„ for every ne A.

(ii) For each n 6 A, there exists lf„e °Un such that

o-B([/nfc„,Ifn)£(JnfcB+1.

It is easily seen that ^ is nonvoid and closed under finite intersection. Thus to

see that ^ defines a group topology for K it is sufficient to see that if\Jeúl¿ is

given then there exists V e% such that V - V £ U. Let Ue<?/ he given. By

hypothesis, for each ne.A, there exists  W„e^„ such that

o-B([/nfc„,lfn)£l/nfcB+1.

Using the axiom of choice pick such a If„ for each neN. Applying the axiom of

choice again, for each n e A pick Wn in aUn such that W„' + Wn £ If,. Inductively,

we define a sequence {V„}nex satisfying (i) and (ii) and such that I/„ — V„ £ U O fc„,

for each ne A. To begin, choose fo^^o SUCn that V0 — V0 £ U n fc0. For

each n e A, set V„+x = crn(Vn, JfB'). Clearly V = (J„eJV V„ satisfies (i) and (ii). The

obvious inductive argument shows that, for each n e A, V„ — V„ £ U n fc„. It

follows that V e <% and V - V £ U.

To see that multiplication is continuous at zero, let Ue°U be given. We will

construct aV e% such that V ■ V £ ^.

Let !F he the family of all finite sequences {Vn;n gp,neA}, peA, satisfying

the following three conditions :

(a) V„ e "Un for each n e A.

(b) For each neN, there exists !f„ e ^„such that

v„,vn-vn + wn<=unkn.

(c) If 0 < n g p, there exists IfB_ x e <%n_ x such that

0-B_1(fB_1,WB'_1) = FB.

Note that SF is not void since there exists V0 = ^0 satisfying (a) and (b).
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We define a partial order on #" by {An}„¿p ̂  {B„}„¿q in case p 5¡ q and A„ = B„

for n ^ p. By the maximum principle there exists a maximal chain in !F, say M'.

The maximal chain Ji must be infinite. For if not, JÍ has a largest element, say

{V„}„<p- By Lemma 3.3, this sequence can be extended to a sequence {V„}n¿p+X.

Adjoining this sequence to Jt yields a chain properly containing Jt, contrary

to the maximality of Ji. Let {V„}„€N = {V„;V„eM for some MeJi}. Clearly

{Vn} satisfies (i), (ii), (a), (b), and (c). Consequently V = [JneN Vne^¿ and

V-VsU.
To complete the proof that multiplication is continuous, it is sufficient to see

that if Ue<% and heK are given, there exists Ve<% such that hV £ U. Thus

suppose Ue'W and h e K are given. Let p be the smallest integer such that h e k„.

There exists Vp e allp such that hVp £ C7 n kp. As above, for each neN, n^. p,

use the axiom of choice to pick Wn and W'KeQln such that (TB(C/ n fc„, W„)

£17 nfcB+1 and hW¿s W„. For n < p, set FB = Vpr\k„ and inductively for n>p,

set Kn = <7B_1(KB_1,I7B'_i). It is easily verified that F = U„e¡v V„e<%andhVç U.

The proof that t/ defines a Hausdorff topology is similar. It is sufficient to see

that if 0 # g e K, then there exists aFe* such that g$V. Let p be the smallest

integer n such that g e kn. Since ^"p is Hausdorff, there exists Vp e °lip such that

g $ Vp. For n < p, set Vn = Vpnk„andfor n> p,setVn = cTn-AV„_x,V„-x).Itis

clear that V = U„eA, F„ e U and g¿ K

In [2] it is shown that any ring topology on a field can be weakened to a field

topology. Thus the theorem follows.
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