On algebraic equivalence between pairs of linear transformations
HTML articles powered by AMS MathViewer
- by Uri Fixman
- Trans. Amer. Math. Soc. 113 (1964), 424-453
- DOI: https://doi.org/10.1090/S0002-9947-1964-0169855-5
- PDF | Request permission
References
- N. Aronszajn and U. Fixman, Algebraic spectral theory (to appear).
R. Baer, Abelian groups without elements of finite order, Duke Math. J. 3 (1937), 68-122.
R. A. Beaumont and H. S. Zuckerman, A characterization of the subgroups of the additive rationals, Pacific J. Math. 1 (1951), 169-177.
L. Fuchs, Abelian groups, Publishing House of the Hungarian Academy of Sciences, Budapest, 1958.
F. R. Gantmacher, Applications of the theory of matrices (English transl.), Interscience, New York, 1959.
I. Kaplansky, Infinite abelian groups, Univ. of Michigan Press, Ann Arbor, Mich., 1954.
S. MacLane, A lattice formulation for transcendence degrees and p-bases, Duke Math. J. 4 (1938), 455-468.
Bibliographic Information
- © Copyright 1964 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 113 (1964), 424-453
- MSC: Primary 15.05
- DOI: https://doi.org/10.1090/S0002-9947-1964-0169855-5
- MathSciNet review: 0169855