Transactions of the American Mathematical Society

Published by the American Mathematical Society since 1900, Transactions of the American Mathematical Society is devoted to longer research articles in all areas of pure and applied mathematics.

ISSN 1088-6850 (online) ISSN 0002-9947 (print)

The 2024 MCQ for Transactions of the American Mathematical Society is 1.48 .

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Concentricity in $3$-manifolds
HTML articles powered by AMS MathViewer

by C. H. Edwards
Trans. Amer. Math. Soc. 113 (1964), 406-423
DOI: https://doi.org/10.1090/S0002-9947-1964-0178459-X
References
    J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 19 (1924), 6-8. R. H. Bing, Locally tame sets are tame, Ann. of Math. (2) 59 (1954), 145-158. —, An alternative proof that 3-manifolds can be triangulated, Ann. of Math. (2) 69 (1959), 37-65. —, ${E^3}$ does not contain uncountably many mutually exclusive wild surfaces, Abstract 801t, Bull. Amer. Math. Soc. 63 (1957), 404. —, Conditions under which a surface in ${E^3}$ is tame, Fund. Math. 47 (1959), 105-139. M. Brown, The monotone union of open n-cells is an open n-cell, Proc. Amer. Math. Soc. 12 (1961), 812-814. —, Locally flat imbeddings of topological manifolds, Ann. of Math. (2) 75 (1962), 331-341. M. K. Fort, Topology of 3-manifolds, Prentice-Hall, Englewood Cliffs, N. J., 1962.
  • C. H. Edwards Jr., Concentric tori in the $3$-sphere, Bull. Amer. Math. Soc. 67 (1961), 220–222. MR 123304, DOI 10.1090/S0002-9904-1961-10577-6
  • C. H. Edwards Jr., Concentric solid tori in the $3$-sphere, Trans. Amer. Math. Soc. 102 (1962), 1–17. MR 140091, DOI 10.1090/S0002-9947-1962-0140091-X
  • D. S. Gillman, Concentric surfaces in ${E^3}$, Abstract 579-17, Notices Amer. Math. Soc. 8 (1961), 160.
  • John G. Hocking and Gail S. Young, Topology, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1961. MR 0125557
  • Edwin E. Moise, Affine structures in $3$-manifolds. V. The triangulation theorem and Hauptvermutung, Ann. of Math. (2) 56 (1952), 96–114. MR 48805, DOI 10.2307/1969769
  • Horst Schubert, Knoten und Vollringe, Acta Math. 90 (1953), 131–286 (German). MR 72482, DOI 10.1007/BF02392437
  • H. Seifert and W. Threlfall, Lehrbuch der Topologie, Chelsea, New York, 1945. J. H. C. Whitehead, Simplicial spaces, nuclei, and m-groups, Proc. London Math. Soc. 45 (1939), 243-327.
Similar Articles
  • Retrieve articles in Transactions of the American Mathematical Society with MSC: 54.78
  • Retrieve articles in all journals with MSC: 54.78
Bibliographic Information
  • © Copyright 1964 American Mathematical Society
  • Journal: Trans. Amer. Math. Soc. 113 (1964), 406-423
  • MSC: Primary 54.78
  • DOI: https://doi.org/10.1090/S0002-9947-1964-0178459-X
  • MathSciNet review: 0178459