ORDERS IN SIMPLE ARTINIAN RINGS

BY

CARL FAITH

This note is a continuation of the preceding article [1]. The notation and terminology employed there will be used here.

A simple artinian ring Q has the form D_n, where D is a field. A subring S of Q is a right order in Q in case Q is the classical right quotient ring of S. Two right orders R, S of Q are equivalent in case there exist regular elements $a, b, a', b' \in Q$ such that $aRb \subseteq S$ and $a'Sb' \subseteq R$. This relation is reflexive, symmetric, transitive, and we write $R \sim S$ (thereby suppressing Q).

The main result of [1] states that if R is an order in Q, then for a suitable choice of a complete set $M = \{ e_{ij} \mid i, j = 1, \cdots, n \}$ of matrix units of Q, if D denotes the centralizer of M in Q, then there exists a subring F of $P = R \cap D$ such that (1) F is a right order in D, and (2) $R \supseteq F_n = \sum_{i,j=1}^{n} e_{ij}$. Furthermore, we indicated by example that R itself is not necessarily of the form K_n, where K is an integral domain, even when R possesses an identity element.

The main result of the present article states, in the notation of the paragraph above, that if R is a right order of Q, then $P \sim P_n$, and, in fact, there exists a right order U of D such that $P \sim U_n$ and $U_n \subseteq R$ (cf. Theorem 1). Under the additional hypothesis that R is a simple ring with identity, we show that $R \sim U_n^2$ and U_2 (resp. U_n^2) is a simple ring.

Henceforth, $R, Q, D, M = \{ e_{ij} \mid i, j = 1, \cdots, n \}$, P, F are fixed as in the second paragraph above, and have the same meaning as in the proof and statement of Theorem 2.3 of [1]. Two further symbols appearing there are $A = \{ r \in R \mid rM \subseteq R \}$ and $B = \{ r \in R \mid Mr \subseteq R \}$. If S is any subring, and if X is a subset of Q, then $S[X]$ is the subring of Q generated by S and X. Throughout, the symbol G_n denotes that G is a subring of D, and that $G_n = \sum_{i,j=1}^{n} e_{ij}$. Note that $G_n = G[M]$ if and only if G contains the identity element of D.

1. Theorem. If R is a right order in the simple artinian ring $Q = D_n$, then:
 (1) $U = B \cap P = A \cap P$ is an ideal of $P = R \cap D$.
 (2) $B \cap A \supseteq U_n \supseteq BA \supseteq U_n^2$.

Received by the editors August 7, 1963.

(1) The author gratefully acknowledges support from the National Science Foundation under grant G-19863.

(2) Note that if T is the classical right quotient ring of a subring, then each regular element of T is invertible. Artinian rings with identity also have this property.

61
(3) P, U, U^2 are right orders in D.

(4) R, U_n, U_n, P_n are equivalent right orders in Q.

(5) If $0 \neq u \in U$, then $R[u^{-1}] = P'_n$, where $P' = P[u^{-1}]$.

Proof. (1) If $u \in U = B \cap P$, then $Mu \subseteq R$ (since $u \in B$) and $uM = Mu$ (since $u \in D$). Thus $u \in A$, that is, $U \subseteq A \cap P$. Similarly $A \cap P \subseteq U$, so $U = A \cap P$. Since B (resp. A) is a right (resp. left) ideal of R, U is a (right and left) ideal of P.

(2) Let $H = B \cap A$, and let $T = BA$. Since $e_iB \subseteq B$ (resp. $Ae_i \subseteq A$), $i, j = 1, \ldots, n$, it follows that $H \supseteq U_n$. Let $b \in B$, $a \in A$, let $t = ba$, and set $t_{ij} = \sum_{k=1}^n e_{ik} t_{kj}$, $i, j = 1, \ldots, n$. Since t_{ij} commutes with the elements of M, then $t_{ij} \in D$, $i, j = 1, \ldots, n$. Furthermore

$$t_{ij} = \sum_{k=1}^n (e_{ik} b)(ae_{kj}) \in BA = T,$$

so that

$$t_{ij} \in D \cap T \subseteq D \cap B = P \cap B = U,$$

$i, j = 1, \ldots, n$. This shows that $t = \sum_{i,j=1}^n t_{ij} e_{ij} \in U_n$. Since each element of $T = BA$ is a sum of elements of the form ba, it follows that

$$H = A \cap B \supseteq U_n \supseteq T = BA.$$

Finally, we note that

$$BA = T \supseteq H^2 \supseteq (U_n)^2 \supseteq (U^2)_n,$$

proving (2).

(3) F is a right order of D, and $F_n \subseteq R$, so clearly $F \subseteq U \subseteq P$. This shows that U and P are right orders in D. Since U^2 is an ideal of U, it follows that U^2 is a right order in D, since if $d = uv^{-1}$ with $u, v \in U$, and if $0 \neq w \in U^2$, then $d = (uw)(vw)^{-1}$, with $uw, vw \in U^2$.

(4) From (3) it follows that U_n, U_n^2, and P_n are right orders in $Q = D_n$. If $0 \neq u \in U$, then $uR \subseteq B$, so that

$$uRu \subseteq BA \subseteq U_n \subseteq P_n.$$

But U is an ideal of P, so $u^2P \subseteq U^2$, and therefore

$$u^2Ru \subseteq u^2(P_n) = (u^2P)_n \subseteq U^2_n \subseteq U_n \subseteq P_n.$$

Conversely,

$$u^2(P_n) = (u^2P)_n \subseteq U^2_n \subseteq U_n \subseteq R.$$

Since $u^{-1} \in Q$, the proof of (4) is complete.

(5) From the proof of (4) we have that $uRu \subseteq P_n$, so clearly $R \subseteq P'_n$, and $R[u^{-1}] \subseteq P'_n$. Conversely since $Mu \subseteq R$, then $M \subseteq Ru^{-1} \subseteq R[u^{-1}]$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Since \(P \subseteq R \), it follows that \(P' = P[u^{-1}] \subseteq R[u^{-1}] \), and so \(P_n' \subseteq P'[M] \subseteq R[u^{-1}] \). This proves that \(R[u^{-1}] = P_n' \).

2. Theorem. If \(R \) in Theorem 1 is a simple ring with identity, then:
 (1) \(B, A, BA = T \), and \(U^2 \) are all simple rings.
 (2) \(T = U_n' \).
 (3) If \(0 \neq u \in U^2 \), then \(P' = P[u^{-1}] \) and \(P_n' \) are simple rings.

Proof. Let \(I \) be a nonzero ideal of \(T = BA \). Then
\[
I \supseteq (BA)I(BA) = B(AIB)A.
\]
Since \(A \cap B \supseteq U \) contains a regular element, clearly \(AIB \neq 0 \). Thus, simplicity of \(R \) forces \(R = AIB \). Therefore \(I \supseteq BRA \supseteq BA \), so \(BA \) is simple.

Already we have seen that
\[
T = BA \supseteq H^2 \supseteq (U_n^2)^2 \supseteq T^2,
\]
where \(H = A \cap B \). Since \(T \) contains the integral domain \(U \), then \(T^2 \neq 0 \), so simplicity of \(T \) yields \(T = T^2 \). It follows that
\[
T = (U_n^2)^2 = U_n^2,
\]
so simplicity of \(U^2 \) follows from that of \(T \). If \(0 \neq u \in U^2 \), and if \(I \) is a nonzero ideal of \(P' = P[u^{-1}] \), then \(I \cap U^2 \) is a nonzero ideal of \(U^2 \) (since \(U^2 \) is a right order in \(D \)). Thus simplicity of \(U^2 \) implies that \(I \supseteq U^2 \). Since \(u \in I \) is invertible in \(P' = P[u^{-1}] \), then \(I = P' \), so \(P' \) (also \(P_n' \)) is simple.

Next we show that \(B \) (resp. \(A \)) is simple. Let \(I \) be a nonzero ideal of \(B \) (resp. \(A \)). If \(0 \neq u \in U \), then \(u^3Iu \neq 0 \) and \(u^3Iu \subseteq U_n^2 = T \) by the proof of (4) of Theorem 1. Since \(u \in B \) (resp. \(u \in A \)), it follows that \(u^3Iu \subseteq T \cap I \), so \(T \cap I \) is a nonzero ideal of \(T \). Simplicity of \(T \) forces \(I \supseteq T \). Then \(I \supseteq BAB \) (resp. \(I \supseteq ABA \)). Since \(AB = R \), then \(I \supseteq B \) (resp. \(I \supseteq A \)), proving that \(B \) (resp. \(A \)) is simple.

3. Corollary. Under the hypotheses of the theorem, \(R = P_n \) if and only if \(P \) is a simple ring.

Proof. The necessity is well known. Conversely if \(P \) is simple, then \(P = U \) by (1) of Theorem 1. Consequently, \(1 \subseteq U \subseteq B \), so \(M = M1 \subseteq R \), and it follows that \(R = P_n \) (since \(P = R \cap D \)).

4. Corollary. Let \(R \) be a right order of \(Q = D_n \), and assume that \(R \) is a simple ring with identity element. (1) If \(z \) is an element of \(Q \) such that \(Rz \subseteq zR \), then \(z \) is invertible in \(Q \) and \(z, z^{-1} \in R \). (2) \(R \) contains the center of \(Q \).

Proof. (1) Since \(R \) is a right order of \(Q \), \(I = zR \cap R \neq 0 \). Thus \(I \) is a nonzero right ideal of \(R \), and the relation \(Rz \subseteq zR \) implies that \(I \) is an
ideal of R. Since R is simple, $I = R$, so $zR \supseteq R$. It follows that z is not a left zero divisor in Q, and since Q is left artinian, we conclude that $z^{-1} \in Q$. Since $R \supseteq z^{-1}R$, then $z^{-1} \in R$. Now simplicity of R implies that $Rz^{-1} = R$, the ideal of R generated by z^{-1}, equals R. Since $z^{-1}R \subseteq Rz^{-1}$, we obtain that

$$R = Rz^{-1} \subseteq Rz^{-1} \subseteq R,$$

that is, that $Rz^{-1} = R$. Thus, $(z^{-1})^{-1} = z \in R$, proving (1). (2) is an immediate consequence.

Reference