Invariant means on spaces of continuous or measurable functions
HTML articles powered by AMS MathViewer
- by Chivukula Ramamohana Rao
- Trans. Amer. Math. Soc. 114 (1965), 187-196
- DOI: https://doi.org/10.1090/S0002-9947-1965-0174938-0
- PDF | Request permission
References
- Richard Arens, The adjoint of a bilinear operation, Proc. Amer. Math. Soc. 2 (1951), 839–848. MR 45941, DOI 10.1090/S0002-9939-1951-0045941-1 S. Banach, Théorie des opérations linéaires, Monogr. Mat., Tom 1, Warsaw, 1932.
- N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d’applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1229, Hermann & Cie, Paris, 1955 (French). MR 0077882
- Mahlon M. Day, Means for the bounded functions and ergodicity of the bounded representations of semi-groups, Trans. Amer. Math. Soc. 69 (1950), 276–291. MR 44031, DOI 10.1090/S0002-9947-1950-0044031-5
- Mahlon M. Day, Amenable semigroups, Illinois J. Math. 1 (1957), 509–544. MR 92128 I. Glicksberg and K. deLeeuw, Applications of almost periodic compactifications, Technical Note No. 9 (AFOSR TN 59-1174), Stanford Univ., Stanford, Calif., 1959. J. von Neumann, Zur allgemeine Theorie des Masses, Fund. Math. 13 (1929), 167-190. W. G. Rosen, On invariant means over topological semigroups, Ph.d Thesis, Univ. of Illinois, Urbana, Illinois, 1954.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 114 (1965), 187-196
- MSC: Primary 42.50
- DOI: https://doi.org/10.1090/S0002-9947-1965-0174938-0
- MathSciNet review: 0174938