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Introduction. The purpose of this work is to introduce the notion of en-

tropy as an invariant for continuous mappings.

1. Definitions and general properties. Let X be a compact topological

space.

Definition 1. For any open cover 31 of X let N(ñ) denote the number

of sets in a subco ver of minimal cardinality. A subco ver of a cover is

minimal if no other subcover contains fewer members. Since X is compact

and 31 is an open cover, there always exists a finite subcover. To conform

with prior work in ergodic theory we call 77(31) = logAf(3l) the entropy

of 31.
Definition 2. For any two covers 31,33,31 v 33 = {A fïP|A£3l,P£93 }

defines their jo i re.

Definition 3. A cover 93 is said to be a refinement of a cover 3l,3l< 93,

if every member of 93 is a subset of some member of 31.

We have the following basic properties.

Property 00. The operation v is commutative and associative.

Property 0. The relation -< is a reflexive partial ordering (') on the

family of open covers of X.

Property 1.31 < 31 ',93 < 93' => 31 v 93 < 31' v93'.
Proof. Consider A' n B' £ 31' v93' where A'£ 31' and P'£93'. By

hypothesis there exists A £ 31 and P £ 93 such that A' ç A, B' Ç P. Thus

A' n B' Q A n P where A n P £ 31v93.
Remark. With the proper substitutions of 31,93 and the cover ¡Xj in

the statement above we obtain 31<;3lv93 and 93 -< 3lv93 which reveals

that the family of open covers is a directed set with respect to the relation -< .

Property 2. 31 ■< 93 => AT(3I) ^ Ai(93), 77(31) ̂ 77(93).
Proof. Let \BX, ■ ■ -,BN(ss) \ be a minimal subcover of 93. Since 3l<93.

there exists a subcover \AX, ■■■,ANI^)\ of 31. Therefore Af(Sl) s' Af(93) and

also 77(31) ̂ 77(93).
Property 3. 3l<93 =>.rV(3lv93) = iV(93),77(31 v93) =77(93).
Proof. It follows from Property 1 that 93 < 31 v93 so that AT(93) ̂

iV(3l v 93 ). On the other hand 93 >■ 31 v 93 which is a consequence of the

hypothesis. Thus AT(3lv93) ^ AT(93).
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Property 4.  AT(21v93) i£/V(2l) • AT(93)   and  #(21 v S3 ) z% #(21) + #(93 ).
Proof. Let {Ai, • • -, An(S) j be a minimal subcover of 21 and ¡Pi, • • .,Pno)(

be a minimal subcover of 93. Then [Aif\Bj\ i « 1, ••-,#(»), ; - 1,

• ••,/V(93)}   is   a   subcover   of  21 v 93.   Consequently   AT(21 v 93) ^ 7V(ä)

N<&).
Let ^ be a continuous mapping of X into itself.

If 21 is an open cover of X then from continuity, the family of f~1%

= \ip'1A\ A E 211 is again an open cover.

Property 5. 21 ■< 93 => *-'«-< ^"193.

Property 6. ^"1(2lv93) = v_121 v?"1».

Property 7. 7V(«) £ N(v~lïi).

Proof. Let \Ay, ■■■,ANm\ be a minimal subcover of 21. Since \<p~lAy,

•■•,<P~1AN^y)\ is a cover, possibly not minimal, we have N(<p"'21) ^ N(2l).

Remark. When ^ is onto then /V(2l) = A^-1»).

Property 8.

limtf ( W*a\ /«- = lim#(21 v v~lfL v • ■ • v *-"+1a)/n

exists and is finite.

Proof.

#(21 v ••■ v ^-"-'1+12l) = #(21 v ■ • • v <p~m+1% v ?-»($. v ••• v ^-n+121))

z% #(21 v ... v ^m+12t) + H(<pm(% v ••• v v-n+1fl))

g H®, v • • • v ^m+12I) + #(21 v ... v ^-n+121).

The first equahty follows from Property 6; the next inequality from Prop-

erty 4; and the final inequality from Property 7.

Letting #n = #(21 v • • • v ^ n+121) we have #m+n z%Hm + Hn and #„ ^ 0

for all positive integers m,n. It is a standard exercise in analysis to prove

that limn„O0#„/n exists and is finite.

Definition. The entropy h(¡p,%) of a mapping ¡p with respect to a cover

21 is defined as limn_#(2I v^'21 v • ■ • v ^-"+12l)/n.

Property 9. AO.H) ^#(21).

Proof. This follows from Properties 4 and 7.

Property 10. 2U 93 => /»•>,«) ̂  h{v, 93).
Proof. This follows from Properties 1, 2 and 5.

Property 11. If ^ is a homeomorphism then A(<?,21) = A(^',2l).

Proof.

#(21 v ... v ^-n+121) = #(/-1(2l v • • • v *>-"+12t))

= #(21 v^2I M ■ ■ ■ y ipnl%)

= #(21 v^-1)-1^ v-ví*-1)—+1«).

Definition. The entropy h(<p) of a mapping ¡p is defined as the sup h(ip, 21)

where the supremum is taken over all open covers 21. (Considering {h(<¿>, 21) |21}
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as a net, A(«?) = lim« A(<¿>,21).)

Definition. A sequence ¡2ln|  re = 1,2, ••• j of open covers is refining if

(1) 2ln<Sln+1.

(2) For every open cover 33 there exists 2l„ such that 33 -< 21„.

A refining sequence of covers when it exists simplifies the computation

of entropy as the next property reveals.

Property 12. If {2l„j is a refining sequence of covers

A(^) = limA(v>,2U.

Proof. This property follows from Property 10 above.

2. General theorems.

Theorem 1. Entropy is an invariant in the sense that h(\¡/ip\p'1) = h(<p)

where ¡p is a continuous mapping of X into itself and \L is a homeomorphism

of X onto some X'.

Proof.

h(fwl,-\fH) = limP(^21 v^-'fVä v-v^-'+VW/'*
n—' °d

= limP(2l v^"1» v.v^n+19I)/re
n—• œ

= A(<,,21).

As 21 ranges over all open covers of X, ^31 ranges over all open covers of X'

since \p is a homeomorphism; hence h(\t/<py¡/~y) =A(^).

Theorem 2. A(c/) = AA(<¿>) for k a positive integer.

Proof.

A(/) £ A(V,2l v*."1» v-v¥>-*+121)

= AlimP(2I v^r1» v-v^"*+12l v^-*9l v-
n—• oo

v v^+12l v • • • v ^-("-1,*31 v ••• v ^-"*+13l)/reA

= AA(<¿>,21)

for any open cover 31. Thus A(</) ^ kh(ip). On the other hand, since

91 vi.**)"1« v ■ • • v(/)-n+13l^ 21 v v"1» v ••• v «r"**1«,

A(^,2l) = limP(21 v*"1» y.-v?"*+121)/reA
n—* oo

^ limP(21 vi/)"1?! v...v(/)-n+13l)/reA

= A(/,21)/A,

for any open cover 21;  thus kh(<p) ̂  h(tpk).
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Corollary. If ¡p isa homeomorphism then h(<pk) = | k\h(<p) for any integer A.

Theorem 3. Let X and Y be two compact topological spaces. Let <px be a

continuous mapping of X into itself and <p2 a continuous mapping of Y into

itself. Then

h(<Pi X ipè = h(<pù + AW

where <pxX >p2 is the continuous mapping of X X Y into itself defined by <px

X<p¿ (x,y)-> (<pxx,<p2y).

Proof. Open covers of X X Y of the form Slx93 = |AxP| A £ 31,

P£93[ have the property that iVXxy(3l X 93) = Nx(ñ) • NYC$) and

(31 X 93) v (31' X 93') = (31 v 31') X (93 v 93') where 31,31' are covers of X
and 93, 93 ' are covers of Y. Although a cover itself usually indicates which

space it covers, subscripts on N signifying the set being covered can be

employed as above in order to reduce ambiguity. Consequently,

A(n X *2f * X 93) = A^i.Sl) + A(^2,93)

which implies h(¡px X <p2) s= h(<px) + h(<f>2). To establish the reverse inequality

we need only show that for an arbitrary cover S of X X Y there exists a re-

finement of the form 31 X 93 where 31 is a cover of X and 93 is a cover of Y.

Since every open subset of X X Y is a union of rectangles A X P, A open

subset of X, B open subset of Y, we can obtain a refinement of S consisting

only of open rectangles and from this choose a minimal subcover (£'; i.e., ©'

= {A'xXB'u---,A'NmxB'mi\and(i< S'.Let 31'= \A'X, ■ ■-,A'Nm\ and

93'= \Bx,---,Bn<h>)\. Let Ax be the intersection of all sets from 31' which

contain the element x £ X and By be the intersection of all sets from 93 '

which contain the element y £ Y. These newly defined sets are of course

open, and we can choose a finite number of points xx,---,xm in X and yx,

■ ■ ■,yn in Y such that 31 = ] Axv • • •, A% j and 93 = jByv ■■■,Byn) are covers

of X and Y respectively. Consider any set Ax¡ X Byj £ 31 X 93. Since S ' is a

cover of X X Y, (xt,yj) £ A'kX B'k for some integer A between 1 and N(($.').

Because x¡ £ A'k and y¡ £ B'k it follows that AxiQ A'k and Byj C P£; that is

Ax¡ X ByjQA'k X B'k which implies the desired result S ■< <§.'< 31 X 93.

In the next theorem we apply the elementary lemma.

Lemma. Suppose \an] and \bn\ are two sequences of real numbers not less

than 1 such that lim„_„ (loga„)/re = a and lim„„„ (logA„)/n = b exist. Then

lim„_m log(a„ + bn)/re = max]a,b\.

Proof. For any c > a, b there exists an integer re0 such that log a„ < nc

and log bn < nc whenever re è "o- Thus log (an + bn) < nc + log 2 for re è re0.

Consequently

a, b g lim inf (log(a„ 4- bn))/n ^ lim sup (log(a„4- bn))/n < c.
n-^ » n— oo
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Therefore lim„JCo(log(an + bn))/n = max ja, b\.

Theorem 4. Let Xy and X2 be two closed subsets of X such that X = Xi U X2

and (pXy Ç Xy, <pX2 Ç X2 for a continuous mapping <p of X into itself. Then

hi<p) = maxjA(v5i),A(^2) J,

where <py and ¡p2 are the restrictions of <p to Xy and X2 respectively.

Proof. Let i = 1 or 2. For any open cover 21 of X the family (21),

= jAnX,| A G 21 j defines an open cover of X¡; open in the subspace

topology of X,. Employing subscripts on N to indicate the space whose

cover is being counted we have AT¿((21);) z% N(ñ). For open covers 21 and

93 of X we also have (21v93),= (21)^(93),, Furthermore ^(21),= fo"1«),-

because of the invariance of X¿. Let 21, be an arbitrary open cover of X„

open in the subspace topology of X,-. There exists an open cover 21 of X such

that (ñ), = 21,: namely, 21 = | A ij (X - X¡) |  A G »,-}.

JV.fvV*«,-) =Ni(v\v-kfL)i) = Ni((v\-k%)  ) $n( vV*2l) .
\*-o / \ *=o / \\*-o I ¡I \ *-o /

Thus A(^„2l,) zi A(v?,21). Hence h(<pj z%h(<p). On the other hand for any

open cover 21 of X we have

N(\\-k%)    âNyiViv-^y)   +7V2(/    VV*«)
\ *-0 / \ 4 = 0 / \ * = 0

and as before

n-l

7V¡^ V^-*«y) -Nt(vPrWi\,        ¿=1,2;

whereupon

iogyv/vV*«\ aiogT/Yi/ VV*(2i),\ +N2(v\2-kCä)2X\.

Now applying the lemma

*(*,!)£ max{*(*, (8) J.Afa.W.j)

which yields upon taking suprema

A(<p) z% max|A(<p1),A(<p2) |.

Theorem 5. Lei ~ 6e an equivalence relation on a compact set X. Let <p> be

a continuous mapping of X into itself such that ¡px ~ <py if x^ y. If <p is the

mapping of X/ ~ into itself defined by <¡>k = ir<p where w is the projection

of X onto X/ ~ then

A(ip) á h(<p).
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Proof. Let 21 be an open cover of X/ ~ . Then it _12l is an open cover of X

and Nx(ir-l%) =NX/A%). Therefore h^,*'1 21) = A( ?,%)    and    hence

h(<p) = supA(^,21) ^ supA^.Tr"1!!) = supA( 9,8) = A(i).
a à sí

3. Computation of entropy in metric spaces. Let X be a compact metric

space with metric d.

Definition. The diameter d(21) of a cover 21 is defined by

d(21) = sup d(A)

where d(A) is the diameter of the set A.

Lebesgue's Covering Lemma, tor every open cover 21 of a compact

metric space X there exists t > 0 sucA íAaí if U is a set with d(U) < t then

U is contained in one of the members of 21. TAe supremum of all such numbers

f is called the Lebesgue number of 21.

Rephrasing of Lebesgue's Covering Lemma. For open covers 21 and 33

ofX, if d(33) < Lebesgue number of 21 ¿Aere 2K S3.

Corollary. // |2l„| is a sequence of open covers such that

(1) 2i„ < 9ln+1,

(2) d(SL.)-»0,       asre^ co,

iAere j21„]  is a refining sequence.

Remark. This corollary assures the existence of refining sequences in

metric spaces. For example, the sequence ¡2l„j, where 2l„ is the set of all

spheres of diameter less than 1/re, is refining. In addition from any sequence

¡33 „| of covers satisfying condition (2) of the corollary we can construct

¡2l„|  2l„= VLo^B*) which satisfies both (1) and (2) and thus is refining.

Example 1. If ¡p is an isometry of X onto itself then h(ip) = 0.

Proof. Let 2lp be the family of all open sets of diameter less than l/p. Such

a family enjoys the property that 2lp v 21p = 2lp. Since <p is an isometry,

^-13lp = 21p. This implies 21p = 2lp v <p^% v ■•■ v v~n+1%. Therefore

A(^>,2IP) = 0. According to the previous corollary ]2lpj is a refining sequence

so that we can conclude h(¡p) = 0.

Example la. Let (X, <p) be an equicontinuous compact dynamical

system, then A(<?) = 0.

Proof. The metric d' defined by d'(x,y) = sup_œ<„<„d((p''x, <pny) is

equivalent to d. With respect to this new metric, <p is an isometry and the

above statement applies.

Example  lb. Let X be  a  compact  separable  topological  group  and
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(p : x-> axb,a,b E X.Thenh(<p) = 0.
Proof. X is metrizable, say with metric d. The rotation <p is an isometry

with respect to the metric a" defined by d'(x,y) = s\ipUÍ,exd(uxv, uyv) which

is equivalent to d.

Example 2. Let X= j (x,, *2) | x, + x\ = 1\ be the unit circle. If ? is a

homeomorphism of X onto itself then h(<p) = 0.

Proof. Let 2lp be a covering of X by intervals on X of arc length l/p. The

covering 21p v <p  : 3lp v • • • v ^"n+12lp  is  a  covering  of X  by intervals and

iV(2lpv-v^-n+12lp) ^reiV(2Lj. Thus A(^,21p) = 0; and   since   |21p|p = l,
2, • • • } is refining, h(<p) = 0.

Example 3. Expressing the space of two-sided infinite sequences of

zeros and ones by X = IJf^X, where X¡= JO, 1 j and endowing X¡ with

the discrete topology the space X is compact in the cartesian product

topology by virtue of the Tychonoff theorem. Let (x)¡ denote the ¿th com-

ponent of the sequence x E X. Then cartesian product topology on X is the

same as that determined by the metric d where

d(x,y) = ¿|(*),-00,1/2"'.

Consider the homeomorphism <p of X onto itself called the shift and defined

by fex)i« (x)i+1. Let 21= {{x| (*)„ = 0}, [x\ (x)0 = 1}} and

21p=   V </2I,        p = 0,1,2,.-..
k--P

Since d(2lp) —» 0, as re —» œ , the sequence j 2lp j is refining. Next

A(^,2l) gA(„,»p) = limH(\\-k^p)/n
n^ »        \ *=0 //

= limP(   V<^*21v     V    /2lv-.v   "v+    ?*2l)/re.
n— oo \ k--p t__p_l k=-p-n+l II

From property (3) it then follows that

A(^,21p) = limP(      V      vkH)/n£]imH(      V      /2l)/re
n—»        \ k=-p-n+l /I n^oo        \ t--p-n+l //

= limP(    V    ^k%)\/n = h(^,%).

Counting reveals that N(Vkl0+1 v-"%) = 2" so that A(<^,21) = log 2. Thus

A(<p,21p) = log 2 which by the refining property of the sequence j2lp¡ implies

that h(d>) = log 2.

Remark. If X,■= ¡0,1, ■•-,N—11 above, then A(<¿) = logiV. Furthermore
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if X, above is some compact Hausdorff space containing an infinite number

of points, then h(<p) = œ.

Example 4. Let X be the two dimensional-torus, i.e., X = E2/~ where

F2 is the Euclidean plane and ~ is the equivalence relation which identifies

two points in the plane if their corresponding coordinates differ by integers.

A metric on X can be defined in terms of the metric on E2 by taking the

distance between two points of X to be the minimum distance between

any representatives of these points in E2. A continuous group auto-

morphism ip of X has a representation <p: (x,y) —> (ax + by, ex + dy) (addi-

tions mod 1) where O is a unimodular matrix A, that is, a matrix of

integers with determinant ± 1. Suppose A has two linearly independent

characteristic vectors a,ß, associated with characteristic values \,p, where

|X| ^ 1.  Then

hi<p) = log| X ].

Proof. Consider a covering of E2 by all open parellelograms with sides

parallel to a and ß and having length 1/p. Each set is a representative

of an equivalence class of sets under ~. Let 21p be an open covering of X

by these equivalence classes. If A is one of the above parallelograms then

<p~nA is equivalent to a parallelogram having sides of length |X|"/P and

|X|~7p which are again parallel to characteristic vectors. Considering

one parallelogram equivalent to one of the sets of 21p, p > 1, it can be seen

that it takes |X|n_1 parallelograms to cover it which are equivalent to

sets in <p-n+l<&p.  Thus

p2|xr1^7Y(21pv^-121py...v^-"+121p)^|xr-1A/(21p)

from which follows A(<p,2lp) = log | X |, for p > 1. Since  ¡2lp| p = 1,2, ••• j

is a refining sequence we have A(<¿>) = log | X |.

Remark. If X is an n-dimensional torus and <p a continuous auto-

morphism of X determined by an n by n unimodular matrix having real

characteristic values \y,---,\n and n linearly independent characteristic

vectors, then a similar argument yields

hM= Z l°g|x|.

A curiosity based on the techniques of this work is the following.

Theorem. Let Xbea compact metric space with an infinite number of points.

Let <p be a continuous mapping of X into itself. For any open cover 21 ¿Aere

exists a number 5 > 0 idepending on 21 and <p) such that

d(^-'2l v^-221 v-v*-"!) è ô>0

for all n.

Proof. Suppose d(<p_12l v • • • v <^"n2I) -» 0, as /»-><». There exists an

integer N such that if n ^ N then di<p  L2l v • • • v ^""21) is less than the
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Lebesgue number of 31. Therefore 31 < ^31 v • • • v ̂ ""3l,re ^ N. Thus

AT(31 v^1» v...v^-n3i) = N(v-l% v...v*-"3l) = AT(3lv...v^-n+13l).

By induction JV(3I v ^Sl v • • • v lp'n%) = AT(3l v • - ■ v <p~N%) for re è AT;

that is ./V(3l v • • • v (p"3l) is bounded, say by the number M. Choose M + 1

distinct points xx, • ■■,xM+1 and let n be so large that d(Sl v • • • v <£>~n3l)

< minlá¡<jSM+¡d(x¡,Xj). This is a contradiction because to cover xx, • • -,Xm+x

with sets whose diameters are smaller than minlsi<jSM+id(x¡,Xj) requires

at least M + 1 sets.

4. Background and unsolved problems. In ergodic theory the notion of

entropy for measure-preserving transformations has been extensively

studied by the Russian school. The measure-theoretic entropy is defined

as follows [4]. Let (X,i£.,p) be a measure space with X a set of points,

@ a sigma-field of measurable subsets of X, and p a countably additive

measure on @ with p(X) = 1. Let 31 = \AX, •••,A„j be a finite measurable

partition of X,i.e.,X = U "=iA„ A,£ 31,^^,0 A) = O, i ^ j.The measure-

theoretic entropy 77M(3l) is defined by

n

77,(31) = -ZuiA^oguiA,).
¿=i

Again 31 v 93 denotes the common refinement of two measurable partitions

31 and 93 and we have 77,(31 v93) è 77,(31) +77„(93). If ^ is a measure-

preserving transformation then P^^'Sl) = P„(3l) and the limit A^^,^)

= limn_„ 77„(3l v • • • v (¿>"+13l)/re exists for every finite measurable partition

31.
The number 77„(3l) perhaps appears somewhat mysterious. However,

note that if p(A¿) = 1/re, i = 1, ••-,«, then P^(3l) = logre. The contents

of this present work indicate that 77„(3l) is merely a delicate method of

counting the number of sets in a partition in such a manner that the

measures of the sets are given their appropriate weight in the tally. The

quantity h„(<p) = supA^y^Sl) where the supremum is taken over all finite

measurable partitions 31 is called the entropy of ¡p. This number is a spatial

isomorphism invariant for measure-preserving transformations on (X,(& ,p).

The following theorem of J. G. Sinaí [ 4] is used to compute entropies.

Theorem. 7/31* is a measurable partition such that S is the sigma-field

generated by the family of sets  Ur=«v"5l*, then

A»=A>,31*).

TAe material in this paper we patterned after another theorem of this sort due to

Rohlin[3].

Theorem. If ¡3l„| re =1,2, •••} is a sequence of partitions such that

%n< 3l„+i and the sigma-field generated by Un°=i3I„ is S, ¿Aere h(<p)

= lim„^„A(^,3l„).
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Let us consider some examples.

1.  Let X be compact separable Abelian group and p Haar measure.

Suppose <p:x—>ax then A„(<?) =0 [3].

2. Let X be the «-dimensional torus and p Haar measure. Let <p be a

continuous automorphism on X whose associated unimodular matrix has

n real characteristic values Xi, •••,X„ and n linearly independent character

vectors, then

A»=  Z log|A,| |4j.

3. Let (X,®,p)=Ur=-AXl,<Z¡,p¡), where X, = {0,11,@, = j^, ¡0},
¡1|,X,| and Ml(j0})=p, m,(|1|) = 1-P, O^p^ l,i = 0±l,±2, ....

Let v be the shift transformation on (X,fê,p), i.e., i<px)¡ = ix)l+l. Then

A(ip) — — p logp — (1 — p) log (1 — p) [ 1 ]. If X, is considered to be a com-

pact topological group then pi is Haar measure only when p = 1/2. In this

case X is also a compact topological group with the direct product measure

p being its Haar measure. The mapping ¡p is a continuous automorphism on

X and h(ip) = log 2 which coincides with the maximum of — p logp — (1 — p)

•log(l -p) for 0 <p < 1.

We adopt the convention that A„ denotes measure-theoretic entropy

with respect to a measure p while A denotes topological entropy. Exami-

nation of examples having both topological and measure-theoretic aspects

leads to some conjectures.

Conjecture 1. Let X be a compact topological space and p a regular

measure. If ^ is a homeomorphism on X and also a measure-preserving

transformation then h^(¡p) z% h(<p).

Conjecture 2. Let X be a compact metric space and <p a homeomorphism

on X. A result of Kryloff and Bogoliouboff [2] states that there exists

regular measures p with respect to which <¿> is measure preserving. Then

h(<p) = supA„(^) where the supremum is taken over all such invariant regular

measures. If this is true, is there something special about the measure or

measures where this supremum is assumed?

Conjecture 3. Let X be a compact separable group and <p a continuous

automorphism on X. Then

h(<p) = A„(<p),

where p is Haar measure.

In other directions we conjecture

Conjecture 4. Suppose j <pt} is a one parameter flow on a compact space

X. Then h(ipt) = \t\h(ipy). This is true for t rational. Is it true for all   i?

Conjecture 5. Suppose X and Y are compact topological spaces and

\<Px\ xEX\ is a family of homeomorphisms on Y such that <p: (x,y)

—» (x, <p^y) is a continuous mapping of X X V onto itself. Is
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h((b) = maxA(v3x)?
xex

From Theorem 4 this can be verified when X is a finite set.

5. Conclusion. The notion of entropy has an abstract formulation which

we have not dealt with here. It can be tailored to fit mappings on other

mathematical structures. For example, let G be an Abelian group; for a

finite subgroup 21 of G let N(2l) equal the order of 21; let 21 v 33 be the group

generated by two finite subgroups 21 and 33 of G; let 21 ̂ < 33 mean 21 is a

subgroup of 33 ; and finally let tp be an endomorphism of G. The basic prop-

erties now hold and we can define the entropy h(<p, 21) of tp with respect to

a finite subgroup 21. The entropy h(tp) of tp is then sup A (^,21) where sup re-

mum is taken over all finite subgroups 21 of G; and analogies to the general

theorems can be established.

We are grateful to the referee for correcting the proof of Theorem 5.
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