1. Introduction. Let $S(p)$ denote the class of functions, which are regular and p-valently star-like in $|z| < 1$. A function

$$f(z) = a_1 z + a_2 z^2 + \cdots \quad (|z| < 1)$$

is a member of $S(p)$, if there exists a positive number ρ such that for $\rho < |z| < 1$

\begin{equation}
\Re \left[\frac{zf'(z)}{f(z)} \right] > 0
\end{equation}

and

\begin{equation}
\int_0^{2\pi} \Re \left[\frac{zf'(z)}{f(z)} \right] d\theta = 2p\pi.
\end{equation}

The class $S(p)$ has been studied previously by Goodman [4], Robertson [9] and others. Goodman [4] has shown that a function in $S(p)$ is p-valent and has exactly p roots in $|z| < 1$.

Goodman [4] also defined the class of p-valent convex functions, which we will refer to as $C(p)$. A function

$$f(z) = a_1 z + a_2 z^2 + \cdots \quad (|z| < 1)$$

is said to be in $C(p)$, if there exists a ρ such that for $\rho < |z| < 1$

\begin{equation}
1 + \Re \left[\frac{zf''(z)}{f'(z)} \right] > 0
\end{equation}

and

\begin{equation}
\int_0^{2\pi} \left[1 + \Re \frac{zf''(z)}{f'(z)} \right] d\theta = 2p\pi.
\end{equation}

A function in $C(p)$ is at most p-valent and has $(p - 1)$ critical points in $|z| < 1$. $S(p)$ and $C(p)$ are related to each other in the same way as $S(1)$ and $C(1)$. Namely, $f(z)$ is in $C(p)$ if and only if $zf'(z)$ is in $S(p)$.

Kaplan [5] defined the class of close-to-convex functions. A function $F(z)$,
regular for $|z| < 1$, with $F(0) = 0$ and $F'(0) \neq 0$ is said to be close-to-convex if there exists $\phi(z)$ in $C(1)$ such that

$$\text{Re} \left[\frac{F'(z)}{\phi'(z)} \right] > 0 \quad (|z| < 1).$$

Notice that we may rewrite the last inequality to read

$$\text{Re} \left[\frac{zF'(z)}{f(z)} \right] > 0 \quad (|z| < 1)$$

for some function $f(z)$ in $S(1)$.

Umezawa [13] extended this definition to the case of p-valent functions. According to Umezawa, a function

$$F(z) = z^q + a_{q+1}z^{q+1} + \cdots \quad (|z| < 1)$$

is p-valently close-to-convex, if there exists

$$\phi(z) = z^q + b_{q+1}z^{q+1} + \cdots \quad (|z| < 1)$$

in $C(p)$ such that

(1.5) \quad $$\text{Re} \left[\frac{F'(z)}{\phi'(z)} \right] > 0 \quad (|z| < 1).$$

It is known that a function in this class is at most p-valent in $|z| < 1$ [13].

However, Umezawa’s definition requires that the zeros of $F'(z)$ and $\phi'(z)$ have the same positions and multiplicities. We will redefine the concept of a close-to-convex function by requiring that (1.5) should hold only in some range $\rho < |z| < 1$. Furthermore, we will not require that our functions be normalized.

Definition. We shall say that a function

$$F(z) = a_1z + a_2z^2 + \cdots \quad (|z| < 1),$$

regular for $|z| < 1$, is p-valently close-to-convex, or is in $\mathcal{K}(p)$, if it satisfies one of the following conditions.

(A) There exists a function $f(z)$ in $S(p)$ and a positive number ρ such that

(1.6) \quad $$\text{Re} \left[\frac{zF'(z)}{f(z)} \right] > 0 \quad (\rho < |z| < 1).$$

(B) $F(z)$ is regular on $|z| = 1$ and there exists a function $f(z)$ in $S(p)$, also regular on $|z| = 1$, such that (1.6) holds on $|z| = 1$.

Notice that if $F(z)$ satisfies (A), then there exists a δ such that $G(z) = F(\beta z)$ satisfies (B) for $\delta < \beta < 1$.

If $F(z)$ is in $S(p)$, then taking $f(z) = F(z)$, we see that $F(z)$ is in $\mathcal{K}(p)$. Also, if $F(z)$ is in $C(p)$, then taking $f(z) = zF'(z)$, we see that $F(z)$ is in $\mathcal{K}(p)$.

In §2 we will show that a function in $S(p)$ is at most p-valent in $|z| < 1$. We are also able to obtain sufficient conditions for a function $F(z)$ to be in $S(p)$, provided $F(z)$ is regular on $|z| = 1$: If $F(z)$ has p zeros at the origin, then we are able to remove the condition of regularity on $|z| = 1$.

Considerable interest has been shown in the coefficient problem for functions, which are at most p-valent in $|z| < 1$. Goodman [3] has conjectured that if

$$F(z) = a_1 z + a_2 z^2 + \cdots \quad (|z| < 1)$$

is regular and at most p-valent in $|z| < 1$, then

$$|a_n| < \sum_{k=1}^{p} \frac{2k(n+p)!}{(p+k)!(p-k)!(n-p+1)!(n^2-k^2)} |a_k|$$

for $n > p$.

The conjecture was proven by Goodman and Robertson [2] for a function in $S(p)$, in case all its coefficients are real and by Robertson [9] for $F(z)$ in $S(p)$, in case $a_1 = a_2 = \cdots = a_{p-2} = 0$, the remaining coefficients being complex. In §3 we will prove the conjecture for the $(p+1)$st coefficient of an arbitrary function in $S(p)$. This is the largest class of p-valent functions for which the exact bound on the $(p+1)$st coefficient is known. We also obtain some sharp upper and lower bounds on $|F'(z)|$ for $F(z)$ in $S(p)$.

§4 deals with the radii of close-to-convexity and convexity for a function in $S(p)$. If

$$F(z) = a_2 z^2 + a_{p+1} z^{p+1} + \cdots \quad (|z| < 1)$$

is in $S(p)$, then we obtain a $r_q < 1$ such that $F(z)$ is q-valently close-to-convex in $|z| < r_q$ and $\beta_q < 1$ such that $F(z)$ is q-valently convex in $|z| < \beta_q$. The numbers r_q and β_q depend upon the nonzero critical points of $F(z)$. We are able to show that the number β_q gives us the best possible result. However, we are not able to show this for the number r_q.

2. The class $S(p)$. We will make use of the following lemma due to Umezawa [12].

Lemma 1. Let $f(z)$ be regular for $|z| \leq r$ and $f'(z) \neq 0$ on $|z| = r$. Suppose that for $z = re^{i\theta}$

$$\int_0^{2\pi} d\arg df(z) = \int_0^{2\pi} \frac{\partial}{\partial \theta} \left[\arg zf'(z) \right] d\theta = \int_0^{2\pi} \Re \left[1 + \frac{zf''(z)}{f'(z)} \right] d\theta = 2p\pi(\dagger).$$

If, furthermore,

(\dagger) Geometrically this says that the angle that the tangent to the image of $|z| = r$ makes with the positive x-axis goes through a change of $2p\pi$ as z traverses $|z| = r$. In other words, the image of $|z| = r$, under $w = f(z)$, makes p-loops.
\[\int_{\theta_1}^{\theta_2} d \arg f(z) = \int_{\theta_1}^{\theta_2} \frac{\partial}{\partial \theta} [\arg zf'(z)] d\theta > -\pi \quad \text{for } \theta_1 < \theta_2, \]

then \(f(z) \) is at most \(p \)-valent in \(|z| < r \).

Theorem 1. If \(F(z) \) is in \(\mathcal{H}(p) \), then \(F(z) \) is at most \(p \)-valent in \(|z| < 1 \).

Proof. There exists \(f(z) \) in \(S(p) \) and \(\rho < 1 \) such that

\[(2.1) \quad \Re \left[\frac{zF'(z)}{f(z)} \right] > 0 \quad (\rho < |z| < 1). \]

Since \(zF'(z)/f(z) \neq 0 \) and \(zF'(z) \neq 0 \) for \(|z| = r \) (\(\rho < r < 1 \)), we may define \(\arg [zF'(z)/f(z)] \) and \(\arg [zF'(z)] \) to be single-valued and continuous on \(|z| = r \). Since \(f(z) = [f(z)/zF'(z)] [zF'(z)] \), then \(\arg f(z) = \arg [zF'(z)] - \arg [zF'(z)/f(z)] \) will be uniquely determined and by (2.1) we have for \(z = re^{i\theta} \) (\(\rho < r < 1 \)),

\[-\frac{\pi}{2} < \arg zF'(z) - \arg f(z) < \frac{\pi}{2}. \]

Let \(\theta_1 < \theta_2 \), then

\[(2.2) \quad -\frac{\pi}{2} < \arg re^{i\theta_2} F'(re^{i\theta_2}) - \arg f(re^{i\theta_2}) < \frac{\pi}{2} \]

and

\[(2.3) \quad -\frac{\pi}{2} < - \arg re^{i\theta_1} F'(re^{i\theta_1}) + \arg f(re^{i\theta_1}) < \frac{\pi}{2}. \]

Combining (2.2) and (2.3), we obtain

\[-\pi + \arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) \]

\[< \arg [re^{i\theta_2} F'(re^{i\theta_2})] - \arg [re^{i\theta_1} F'(re^{i\theta_1})] \]

\[< \pi + \arg f(re^{i\theta_2}) - \arg f(re^{i\theta_1}) \]

or

\[-\pi + \int_{\theta_1}^{\theta_2} d \arg f(re^{i\theta}) < \int_{\theta_1}^{\theta_2} d \arg F(re^{i\theta}) \]

\[< \pi + \int_{\theta_1}^{\theta_2} d \arg f(re^{i\theta}). \]

Since \(f(z) \) is in \(S(p) \),

\[\int_{\theta_1}^{\theta_2} d \arg f(re^{i\theta}) > 0. \]

Thus the left side of (2.5) gives
\[\int_{\theta_1}^{\theta_2} d\arg dF(re^{i\theta}) > -\pi. \]

Taking \(\theta_1 = 0 \) and \(\theta_2 = 2\pi \) in (2.5) and using the fact that
\[\int_{0}^{2\pi} d\arg f(re^{i\theta}) = 2p\pi \]
we obtain
\[(2.7) \quad (2p - 1)\pi < \int_{0}^{2\pi} d\arg dF(re^{i\theta}) < (2p + 1)\pi. \]

However, the integral in (2.7) is an integral multiple of \(2\pi \). Therefore,
\[(2.8) \quad \int_{0}^{2\pi} d\arg dF(re^{i\theta}) = 2p\pi. \]

Thus, by Lemma 1, \(F(z) \) is at most \(p \)-valent for \(|z| < r \). Since \(r \) was arbitrary \((\rho < r < 1)\), \(F(z) \) is at most \(p \)-valent for \(|z| < 1 \).

Since (2.8) holds for any function in \(\mathcal{H}(p) \) for some range \(\rho < |z| < 1 \), we easily obtain the following corollary.

Corollary. If \(F(z) \) is in \(\mathcal{H}(p) \), then \(F'(z) \) has exactly \((p - 1) \) zeros in \(|z| < 1 \).

Necessary and sufficient conditions for a function \(F(z) \), regular in \(|z| < 1 \), with \(F(0) = 0 \) and \(F'(z) \neq 0 \) to be in \(\mathcal{H}(1) \) have been given by Kaplan [5]. We see from the proof of Theorem 1 that necessary conditions for \(F(z) \) to be in \(\mathcal{H}(p) \) are that (2.6) and (2.8) hold in some range \(\rho < |z| < 1 \). We will now show these conditions to be sufficient in two particular cases. The method of proof used is that established by Kaplan [5].

Lemma 2. Let
\[F(z) = a_p z^p + a_{p+1} z^{p+1} + \cdots \]
be regular for \(|z| \leq 1 \). If
\[(2.9) \quad \int_{0}^{2\pi} d\arg dF(z) = 2p\pi \]
and
\[(2.10) \quad \int_{\theta_1}^{\theta_2} d\arg dF(z) > -\pi \quad (\theta_1 < \theta_2) \]
for \(|z| = 1 \), then \(F(z) \) is in \(\mathcal{H}(p) \).

Remark. We will show that there exists a function \(f(z) \) in \(S(p) \) with all its zeros at the origin, which is regular for \(|z| < 1 + \epsilon \) for some \(\epsilon > 0 \), and
such that \(\text{Re}[zF'(z)/f(z)] > 0 \) for \(|z| < 1 + \epsilon \). This is actually more than we need to prove the lemma, but it is needed in the proof of Theorem 3.

Proof. Since \(F(z) \) is regular on \(|z| = 1 \), it is regular in some circle containing \(|z| \leq 1 \). By continuity we then have the existence of some \(\epsilon > 0 \) such that (2.9) and (2.10) hold for \(1 \leq |z| \leq (1 + \epsilon) \). Now, the function \(z^{(1-p)}F'(z) \) is free of zeros in \(|z| \leq (1 + \epsilon) \). Hence, we may define \(\arg z^{(1-p)}F'(z) \) to be single-valued and continuous in \(|z| \leq 1 + \epsilon \).

Let

\[
p(r, \theta) = \arg [(re^{i\theta})^{1-p}F'(re^{i\theta})] \quad (r \leq 1 + \epsilon)
\]

and

\[
P(r, \theta) = p(r, \theta) + p\theta.
\]

Then, since (2.9) and (2.10) hold for \(|z| = 1 + \epsilon \), we have

\[
P(1 + \epsilon, \theta + 2\pi) - P(1 + \epsilon, \theta) = 2p\pi,
\]

\[
P(1 + \epsilon, \theta_2) - P(1 + \epsilon, \theta_1) > -\pi \quad \text{for } \theta_1 < \theta_2.
\]

Using an argument identical to Kaplan's [5], we may show the existence of a function \(S(1 + \epsilon, \theta) \), which is increasing in \(\theta \) and such that

\[
S(1 + \epsilon, \theta + 2\pi) - S(1 + \epsilon, \theta) = 2p\pi
\]

and

\[
|S(1 + \epsilon, \theta) - P(1 + \epsilon, \theta)| \leq \frac{\pi}{2}.
\]

Let

\[
q(r, \theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{[(1 + \epsilon)^2 - r^2][S(1 + \epsilon, \alpha) - p\alpha]}{(1 + \epsilon)^2 + r^2 - 2(1 + \epsilon)r \cos(\alpha - \theta)} d\alpha.
\]

Then, \(q(r, \theta) \) is harmonic for \(r < 1 + \epsilon \).

Let \(Q(r, \theta) = q(r, \theta) + p\theta \) for \(r < 1 + \epsilon \). Using the fact that \(S(1 + \epsilon, \alpha) - p\alpha \) has period \(2\pi \), we obtain for \(r < 1 + \epsilon \) and \(\theta_1 < \theta_2 \),

\[
Q(r, \theta_2) - Q(r, \theta_1) = \int_0^{2\pi} \frac{[(1 + \epsilon)^2 - r^2][S(1 + \epsilon, \alpha + \theta_2) - S(1 + \epsilon, \alpha + \theta_1)]}{(1 + \epsilon)^2 + r^2 - 2(1 + \epsilon)r \cos \alpha} d\alpha.
\]

Since \(S(1 + \epsilon, \alpha) \) is increasing

\[
Q(r, \theta_2) - Q(r, \theta_1) \geq 0.
\]

Thus \((\partial/\partial\theta) Q(r, \theta) \geq 0 \) for \(r < 1 + \epsilon \).

Let \(h(z) \) be a function, regular for \(|z| < 1 + \epsilon \), such that \(\text{Im}[h(re^{i\theta})] = q(r, \theta) \) and let
$$f(z) = z^p e^{\theta(z)} = b_p z^p + \cdots \quad (|z| < 1 + \epsilon).$$

For $|z| < 1 + \epsilon$,

$$\text{Re} \left[\frac{zf'(z)}{f(z)} \right] = \frac{\partial}{\partial \theta} \arg f(z) = \frac{\partial}{\partial \theta} (p \theta + q(r, \theta)) = \frac{\partial}{\partial \theta} Q(r, \theta) \geq 0.$$

But $zf'(z)/f(z)$ is regular for $|z| < 1 + \epsilon$. Thus,

$$\text{Re} \left[\frac{zf'(z)}{f(z)} \right] > 0 \quad \text{for } |z| < 1 + \epsilon.$$

Since $f(z)$ has p zeros, all of them at the origin,

$$\int_0^{2\pi} \text{Re} \left[\frac{zf'(z)}{f(z)} \right] d\theta = 2p\pi \quad (|z| < 1 + \epsilon).$$

Hence, $f(z)$ is p-valently star-like for $|z| < 1 + \epsilon$.

Now, for $z = re^{\theta}$, $r < 1 + \epsilon$, we have

$$\arg \frac{zF'(z)}{f(z)} = \arg zF'(z) - \arg f(z) = \arg (p(r, \theta) - q(r, \theta) - p\theta) = \arg (p(r, \theta) - q(r, \theta)).$$

Since $p(r, \theta)$ is harmonic for $|z| < 1 + \epsilon$, we may write

$$\text{(2.14)} \quad p(r, \theta) = \frac{1}{2\pi} \int_0^{2\pi} \frac{[(1 + \epsilon)^2 - r^2]p(1 + \epsilon, \alpha)}{(1 + \epsilon)^2 + r^2 - 2(1 + \epsilon)r \cos(\alpha - \theta)} d\alpha.$$

Then, using (2.12), (2.13) and (2.14), we obtain

$$\left| \frac{zF'(z)}{f(z)} \right| = \left| \frac{p(r, \theta) - q(r, \theta)}{x} \right|$$

$$= \frac{1}{2\pi} \left| \int_0^{2\pi} \frac{[(1 + \epsilon)^2 - r^2][p(1 + \epsilon, \alpha) - S(1 + \epsilon, \alpha)]d\alpha}{(1 + \epsilon)^2 + r^2 - 2(1 + \epsilon)r \cos(\alpha - \theta)} \right|$$

$$\leq \frac{x}{2}.$$

Thus $\text{Re} \left[zF'(z)/f(z) \right] \geq 0$ for $|z| < 1 + \epsilon$. Hence, either $\text{Re} \left[zF'(z)/f(z) \right] > 0$ for $|z| < 1 + \epsilon$, in which case $F(z)$ is in $\mathcal{H}(p)$, or $zF'(z)/f(z)$ reduces to a constant for $|z| < 1 + \epsilon$. In the second case $F(z)$ is in $C(p) \subset \mathcal{H}(p)$.

Theorem 2. Let

$$F(z) = a_p z^p + a_{p+1} z^{p+1} + \cdots \quad (|z| < 1)$$

be regular for $|z| < 1$. If (2.9) and (2.10) hold for some range $\rho < |z| < 1$, then $F(z)$ is in $\mathcal{H}(p)$.

Proof. Let $\rho < \delta < 1$. Then the function $G_{\delta}(z) = F(\delta z)$ is regular on $|z| = 1$
and satisfies (2.9) and (2.10) on \(|z| = 1\). Hence, by Lemma 2, \(G(z)\) is in \(\mathcal{A}(p)\) and there exists

\[
f_n(z) = b_p z^p + \cdots \quad (|z| < 1)
\]

in \(S(p)\) such that

\[
\text{Re} \left[\frac{zG'(z)}{f_n(z)} \right] > 0 \quad (|z| < 1).
\]

We may assume that \(|b_p| = 1\). Cartwright [1] has shown that the family of \(p\)-valent functions with the moduli of the first \(p\) coefficients fixed is a normal family. Thus we may choose a sequence \(\delta_n\) tending to 1, such that the sequence of functions \(f_n(z)\) tends to a function \(f(z)\) in \(S(p)\). Since \(zG_n(z)\) tends to \(zF'(z)\), we obtain from (2.15) that

\[
\text{Re} \left[\frac{zF'(z)}{f(z)} \right] \geq 0 \quad |z| < 1.
\]

This implies that \(F(z)\) is in \(\mathcal{A}(p)\).

Theorem 3. Let

\[
F(z) = a_q z^q + \cdots \quad (1 \leq q \leq p)
\]

be regular for \(|z| \leq 1\). If (2.9) and (2.10) hold on \(|z| = 1\), then \(F(z)\) is in \(\mathcal{A}(p)\).

Proof. By condition (2.9) \(F'(z)\) has \((p - 1)\) zeros in \(|z| < 1\), \((q - 1)\) of them at the origin. Let \(\alpha_1, \alpha_2, \ldots, \alpha_{p-q}\) be the nonzero roots of \(F'(z)\) and let

\[
G(z) = \int_0^z \frac{z^{p-q}F'(z)\,dz}{\prod_{i=1}^{p-q} (z - \alpha_i)(1 - \overline{\alpha}_iz)}
\]

\(G(z)\) is regular for \(|z| \leq 1\) and

\[
zG'(z) = \frac{z^{p-q}zF'(z)}{\prod_{i=1}^{p-q} (z - \alpha_i)(1 - \overline{\alpha}_iz)}.
\]

Since

\[
\arg \left[\frac{z^{p-q}}{\prod_{i=1}^{p-q} (z - \alpha_i)(1 - \overline{\alpha}_iz)} \right] = 0 \quad |z| = 1,
\]

\(\arg zG'(z) = \arg zF'(z)\) for \(|z| = 1\).

Thus, \(G(z)\) satisfies (2.9) and (2.10) on \(|z| = 1\). Hence, by Lemma 2, \(G(z)\) is in \(\mathcal{A}(p)\) and there exists \(f(z)\) in \(S(p)\), regular for \(|z| \leq 1\), such that
But using the same reasoning as above, we have
\[\arg \left(\frac{zG'(z)}{f(z)} \right) = \arg \left(\frac{zF'(z)}{f(z)} \right) \text{ on } |z| = 1. \]

Hence,
\[\text{Re} \left(\frac{zF'(z)}{f(z)} \right) > 0 \text{ for } |z| = 1. \]

Thus, \(F(z) \) is in \(\mathcal{K}(p) \).

Theorem 3 immediately gives us the following lemma, which will prove useful in obtaining a bound for the \((p + 1)\)st coefficient of a function in \(\mathcal{K}(p) \).

Lemma 3. If \(F(z) \) is regular in \(|z| \leq 1\) and in \(\mathcal{K}(p) \), then there exists
\[f(z) = b_p z^p + \cdots \quad (|b_p| = 1) \]
regular and in \(S(p) \) for \(|z| \leq 1\), such that
\[\text{Re} \left(\frac{zF'(z)}{f(z)} \right) > 0 \text{ on } |z| = 1. \]

3. Some extremal problems for the class \(\mathcal{K}(p) \). The following lemma has been proven by Royster [11]. However, the proof we give, which was communicated to me by Professor M. S. Robertson, seems to be different.

Lemma 4. Let \(f(z) = [h(z)]^{-p} \), where \(h(z) \) is in \(S(1) \), \(h(0) = 0 \), \(h'(0) = 1 \) and let
\[f(z) = \sum_{n=1}^{\infty} C_n z^n \quad (0 < |z| < 1, \ C_{-1} = 1), \]
then
\[|C_n| \leq \binom{2p}{n+p} (n = -p, \ldots, 1), \]
and these inequalities are sharp.

Proof. We write
\[z^p f(z) = z^p [h(z)]^{-p} = \sum_{n=0}^{\infty} d_n z^n \quad (|z| < 1, \ d_0 = 1). \]

The lemma will then be proven, if we can show
\[|d_n| \leq \binom{2p}{n} \quad (n \leq p + 1). \]

Taking the logarithm of both sides of (3.1), differentiating and multiplying through by \(z \), we obtain
\[-zf'(z) - \frac{zh'(z)}{p} = \frac{zh'(z)}{h(z)}. \]

Thus, we have for \(|z| < 1 \)
\[\text{Re} \left[-zf'(z) \right] = \text{Re} \left[\frac{zh'(z)}{h(z)} \right] > 0 \quad (|z| < 1). \]

Let
\[P(z) = -zf'(z), \]
then
\[\text{Re} \left[\frac{1}{P(z)} \right] > 0 \quad \text{for } |z| < 1. \]

Let
\[\frac{1}{P(z)} = 1 + \sum_{n=1}^{\infty} \mu_n z^n, \]
\[\frac{1}{P(z)} = -\frac{pf(z)}{zf'(z)} = -\frac{pz^p f(z)}{z^{p+1} f'(z)}, \]
\[-\frac{1}{P(z)} z^{p+1} f'(z) = pz^p f(z), \]
or
\[\left[-\sum_{m=0}^{\infty} \mu_m z^m \right] \left[\sum_{s=0}^{\infty} (s - p) d_s z^s \right] = p \sum_{n=0}^{\infty} d_n z^n. \]

Equating coefficients, we obtain
\[pd_n = \sum_{r=0}^{n} (p - r) d_r \mu_{n-r}, \]
\[nd_n = \sum_{r=0}^{n-1} (p - r) d_r \mu_{n-r}. \]

Since \(|\mu_{n-r}| \leq 2 \), we obtain
\[(3.3) \quad n |d_n| \leq 2 \sum_{r=0}^{n-1} (p - r) |d_r|. \]
provided $p - r \geq 0$. That is, provided $n \leq p + 1$. Using (3.3) and a simple induction argument, we have

$$|d_n| \leq \binom{2p}{n} \text{ for } n \leq p + 1.$$

That the inequalities are sharp is shown by the function

$$f(z) = \left[\frac{z}{(1 + z)^2} \right]^{-p}.$$

Theorem 4. Let

$$F(z) = \sum_{n=1}^{\infty} a_n z^n \quad (|z| < 1)$$

be regular and in $S(p)$ for $|z| < 1$, then

$$|a_{p+1}| \leq \sum_{k=1}^{p} \frac{2k(2p + 1)!}{(p + k)! (p - k)! [(p + 1)^2 - k^2]} |a_k|$$

and this inequality is sharp in all the variables $|a_1|, \ldots, |a_p|$.

Remark. This theorem was first proven for $p = 1$ by Reade [8].

Proof. We may assume without loss of generality that $F(z)$ is regular for $|z| \leq 1$. Then, by Lemma 3 there exists a function

$$f(z) = b_p z^p + \cdots \quad (|b_p| = 1),$$

regular for $|z| \leq 1$ and in $S(p)$, such that

$$\text{Re} \left[\frac{zf'(z)}{f(z)} \right] > 0 \quad (|z| = 1).$$

We may assume that $b_p = 1$ since arg $|b_p|$ is not involved in the inequality to be obtained. Thus we may write $f(z)$ in the form $|\phi(z)|^p$, where

$$\phi(z) = z + \sum_{n=2}^{\infty} h_n z^n$$

is regular for $|z| < 1$ and in $S(1)$.

We may then write (3.5) in the form

$$\text{Re} \left[zF'(z) |\phi(z)|^{-p} \right] > 0 \quad \text{on } |z| = 1.$$

Let

$$|\phi(z)|^{-p} = \sum_{n=-p}^{\infty} C_n z^n \quad (0 < |z| < 1, \ C_{-p} = 1).$$

Then
\[zF'(z) [\phi(z)]^{-p} = \left[\sum_{n=1}^{\infty} na_n z^n \right] \left[\sum_{n=1}^{\infty} C_n z^n \right] \]

\[= \sum_{k=-(p-1)}^{-} d_k z^k, \]

where

\[d_k = \sum_{n=1}^{p+k} C_{-(n-k)} n a_n \quad (k = -(p-1), \ldots). \]

Consider the function \(G(z) \) given by

\[G(z) = zF'(z) [\phi(z)]^{-p} - \sum_{k=-(p-1)}^{-1} d_k z^k + \sum_{k=-(p-1)}^{-1} \overline{d}_k z^{-k}. \] (3.6)

Since \(\overline{z} = z^{-1} \) for \(|z| = 1 \), the last two terms in (3.6) add up to a purely imaginary number for \(|z| = 1 \). Thus,

\[\text{Re}[G(z)] = \text{Re}[zF'(z) [\phi(z)]^{-p}] > 0 \quad \text{for} \quad |z| = 1. \]

But \(G(z) \) is regular for \(|z| \leq 1 \). Therefore,

\[\text{Re}[G(z)] > 0 \quad \text{for} \quad |z| \leq 1. \]

Now

\[G(z) = d_0 + (d_1 + \overline{d}_{-1}) z + \cdots \quad (|z| \leq 1). \]

Hence

\[|d_1 + \overline{d}_{-1}| \leq 2 \text{Re}[d_0] \leq 2 |d_0|, \]

\[\left| \sum_{n=1}^{p+1} C_{-(n-1)} n a_n + \sum_{n=1}^{p-1} \overline{C}_{-(n+1)} n a_n \right| \leq 2 \left| \sum_{n=1}^{p} C_{-n} n a_n \right|, \]

\[(p + 1) |a_{p+1}| \leq \sum_{n=1}^{p-1} \left[2n |C_{-n}| + n |C_{-(n-1)}| + n |C_{-(n+1)}| \right] |a_n| \]

\[+ \left[2p |C_{-p}| + p |C_{-(p-1)}| \right] |a_p|. \]

By Lemma 4

\[|C_{-k}| \leq \binom{2p}{p-k} \quad (k = 1, 2, \ldots, p). \]

Therefore,
\[(p + 1)|a_{p+1}| \leq \sum_{n=1}^{p-1} \left[2n \left(\frac{2p}{p - n} \right) + n \left(\frac{2p}{p - n + 1} \right) + n \left(\frac{2p}{p - n - 1} \right) \right] |a_n| + \left[2p + p \left(\frac{2p}{1} \right) \right] |a_p| \]

\[
= (p + 1) \sum_{n=1}^{p} \frac{2n(2p + 1)!}{(p + n)!(p - n)![(p + 1)^2 - n^2]} |a_n|
\]

which is (3.4).

We remark that the inequality is sharp, since it is known to be sharp for \(f(z) \) in \(S(p) \) with real coefficients \([2], [4]\).

In order to obtain bounds on \(|F'(z)|\) for \(F(z) \) in \(\mathcal{A}(p) \), we will make use of the following lemma.

Lemma 5. Let

\[F(z) = a_qz^q + \cdots \quad (|z| \leq 1) \]

be regular and in \(\mathcal{A}(p) \) for \(|z| \leq 1\). Let \(\alpha_1, \alpha_2, \ldots, \alpha_{p-q} \) be the nonzero critical points of \(F'(z) \) in \(|z| < 1\). Then the function

\[H(z) = \frac{\prod_{i=1}^{p-q} \left(\frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right) (\alpha_i z - 1)}{\prod_{j=1}^{p} \left(\frac{\alpha_j}{|\alpha_j|} - \frac{z}{|\alpha_j|} \right) (\alpha_j z - 1)} \]

is regular for \(|z| \leq 1\) and in \(\mathcal{A}(p) \).

Proof. By Lemma 3, there exists

\[h(z) = b_pz^p + \cdots \quad (|b_p| = 1), \]

regular and in \(S(p) \) for \(|z| \leq 1\), such that

\[\text{Re} \frac{zF'(z)}{h(z)} > 0 \quad \text{for} \quad |z| = 1. \]

\[\frac{zF'(z)}{h(z)} = \frac{z^{p-q}zF'(z) \left[\prod_{i=1}^{p-q} \left(\frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right) (\alpha_i z - 1) \right]^{-1}}{h(z)}. \]

But,

\[\arg \left(z^{p-q} \left[\prod_{i=1}^{p-q} \left(\frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right) (\alpha_i z - 1) \right]^{-1} \right) = 0 \quad \text{on} \quad |z| = 1. \]

Thus,

\[\frac{zF'(z)}{h(z)} = M \frac{zF'(z)}{h(z)}, \quad M > 0 \quad \text{on} \quad |z| = 1. \]

Hence,
Therefore, $H(z)$ is in $\mathcal{K}(p)$.

Theorem 5. Let

$$F(z) = a_q z^q + \cdots \quad (|z| < 1),$$

be regular and in $\mathcal{K}(p)$ for $|z| < 1$. Let $\alpha_1, \alpha_2, \ldots, \alpha_{p-q}$ be the nonzero critical points of $F(z)$ and let $p = \max |\alpha_i|$ and $p^* = \min |\alpha_i|$. Then

\begin{equation}
|F'(re^{i\theta})| \leq \left(\frac{1 + r}{1 - r} \right)^{q-1} q |a_q| \left[\prod_{i=1}^{p-q} \left(1 + \frac{r}{|\alpha_i|} \right) \right] (1 + r|\alpha_i|) \quad (r < 1),
\end{equation}

\begin{equation}
|F'(re^{i\theta})| \geq \left(\frac{1 - r}{1 + r} \right)^{q-1} q |a_q| \left[\prod_{i=1}^{p-q} \left(\frac{r}{|\alpha_i|} - 1 \right) \right] (1 - r|\alpha_i|) \quad (\rho < r < 1),
\end{equation}

\begin{equation}
|F'(re^{i\theta})| \geq \left(\frac{1 - r}{1 + r} \right)^{q-1} q |a_q| \left[\prod_{i=1}^{p-q} \left(1 - \frac{r}{|\alpha_i|} \right) \right] (1 - r|\alpha_i|) \quad (r < p^*).}
\end{equation}

All these inequalities are sharp, equality being attained by the function

$$F_0(z) = \int_0^z \frac{(1 + z) z^{q-1}}{(1 - z)^{p+1}} q |a_q| \prod_{i=1}^{p-q} \left(1 + \frac{z}{|\alpha_i|} \right) (1 + z|\alpha_i|) \, dz.$$

Note that inequality (3.7) was obtained by Umezawa [13] for his class of p-valent close-to-convex functions.

Proof. We may assume without loss of generality that $F(z)$ is regular for $|z| \leq 1$. Consider the functions $H(z)$ and $h(z)$, given in Lemma 5 and in its proof.

\[\frac{zH'(z)}{h(z)} = d_0 + d_1 z + \cdots \quad (|z| \leq 1), \]

where

\[d_0 = \frac{qa_q}{b_p} \left[\prod_{i=1}^{p-q} (-e^{i\arg \alpha_i}) \right]^{-1}. \]

Then

\[\frac{1}{\text{Re}[d_0]} \left[\frac{zH'(z)}{h(z)} - i \text{Im}[d_0] \right] = P(z), \]

where $\text{Re} P(z) > 0$ for $|z| < 1$ and $P(0) = 1$. Thus,
Hence
\[
\left| \frac{zH'(z)}{h(z)} - d_0 \right| \leq |z| = r,
\]
\[
(1 - r) \left| \frac{zH'(z)}{h(z)} \right| \leq (1 + r) |d_0| = (1 + r) q|a_q|.
\]

Using the known bound
\[
|h(z)| \leq \frac{r^p}{(1 - r)^{q^p}} \quad \text{for } |z| = r
\]
and using the definition of \(H(z) \), we obtain
\[
|F'(re^{i\theta})| \leq \frac{(1 + r)}{(1 - r)} r^{p-q+1} q|a_q| |h(z)| \left| \prod_{i=1}^{p-q} \left(\frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right) (\bar{\alpha}_i z - 1) \right|
\]
\[
\leq \frac{(1 + r)r^{p-1}}{(1 - r)^{q+p-1} q|a_q| \prod_{i=1}^{p-q} \left(1 + \frac{r}{|\alpha_i|} \right) (1 + r|\alpha_i|)},
\]
which is (3.7).

To obtain (3.8) and (3.9), we notice that for \(z = re^{i\theta} \)
\[
\left| \frac{P(z) + 1}{P(z) - 1} \right| \geq \frac{1}{r},
\]
\[
|h(z)| \geq \frac{r^p}{(1 + r)^{q^p}},
\]
\[
\left| \frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right| \left| \bar{\alpha}_i z - 1 \right| \geq \left(\frac{r}{|\alpha_i|} - 1 \right) (1 - r|\alpha_i|) \quad (|\alpha_i| < r),
\]
and
\[
\left| \frac{\alpha_i}{|\alpha_i|} - \frac{z}{|\alpha_i|} \right| \left| \bar{\alpha}_i z - 1 \right| \geq \left(1 - \frac{r}{|\alpha_i|} \right) (1 - r|\alpha_i|) \quad (r < |\alpha_i|).
\]

Going through the same type of argument as before, we obtain (3.8) and (3.9).

The function \(F_0(z) \) is in \(S(p) \) relative to
\[
f(z) = \frac{z^q}{(1 - z)^{q^p}} \prod_{i=1}^{p-q} \left(1 + \frac{z}{|\alpha_i|} \right) (1 + z|\alpha_i|).
\]
Equality in (3.7) is attained by $F_0'(r)$, in (3.8) by $F_0'(-r)$, $r > \rho$, and in (3.9) by $F_0'(-r)$, $r < \rho^*$.

4. Radii of close-to-convexity and convexity for functions in $s(p)$. Goodman [4] has proven that if

$$f(z) = a_0z^q + \cdots \quad (|z| < 1)$$

is in $S(p)$, then

$$\text{Re} \frac{zf'(z)}{f(z)} \geq J_q(r) \quad \text{for } r < \rho,$$

where

$$J_q(r) = q - r \left[\frac{2p}{1 + r} + \sum_{i=1}^{p-q} \frac{1}{|\alpha_i| - r} + \frac{|\alpha_i|}{1 - |\alpha_i|r} \right],$$

$\alpha_1, \ldots, \alpha_{p-q}$ being the nonzero roots of $f(z)$ and $\rho = \min|\alpha_i|$. $J_q(r)$ is a decreasing function of r for $r < \rho$, is positive for $r = 0$ and tends to $-\infty$ as r tends to ρ. Thus, $J_q(r)$ has a least positive root r_q and $J_q(r) > 0$ for $r < r_q$.

We thus have that $f(z)$ is q-valently star-like for $|z| < r_q$. This estimate is sharp, since (4.1) was shown to be sharp [4], equality being attained at $z = -r$ by the function

$$f(z) = z^q(1 - z)^{-2p} \prod_{i=1}^{p-q} \left(1 + \frac{z}{|\alpha_i|} \right) (1 + z|\alpha_i|).$$

THEOREM 6. Let

$$F(z) = a_0z^q + \cdots \quad (|z| < 1)$$

be in $s(p)$. Let $\alpha_1, \ldots, \alpha_{p-q}$ be the nonzero roots of $F'(z)$ and let r_q be the least positive root of $J_q(r)$, defined in (4.1). Then $F(z)$ is q-valently close-to-convex for $|z| < r_q$.

Proof. We first prove the theorem for $F(z)$, regular on $|z| = 1$. Then there exists

$$f(z) = b_0z^p + \cdots \quad (|z| \leq 1),$$

regular and in $S(p)$ for $|z| \leq 1$, such that

$$\text{Re} \left[\frac{zf'(z)}{f(z)} \right] > 0 \quad \text{on } |z| = 1.$$

Since

$$\arg \left(z^{p-q} \prod_{i=1}^{p-q} \frac{1}{z - \alpha_i} (1 - \overline{\alpha_i}z) \right)^{-1} = 0 \quad \text{on } |z| = 1,$$

we have
Re \left[\frac{z^{p-q} z F'(z)}{ \prod_{i=1}^{p-q} (z - \alpha_i) (1 - \overline{\alpha_i} z) \cdot f(z)} \right] > 0 \quad \text{for } |z| \leq 1.

Let

\[g(z) = z^{q-p} \left[\prod_{i=1}^{p-q} (z - \alpha_i) (1 - \overline{\alpha_i} z) \right] f(z). \]

Then, \(g(z) \) is in \(S(p) \) since \(\Re \left[\frac{z g'(z)}{g(z)} \right] > 0 \) on \(|z| = 1 \). But \(g(z) \) has nonzero roots at \(\alpha_1, \alpha_2, \ldots, \alpha_{p-q} \). Therefore, \(g(z) \) is \(q \)-valently star-like for \(|z| < r_q \). Since

\[\Re \left[\frac{z F'(z)}{g(z)} \right] > 0 \quad \text{for } |z| \leq r_q, \]

\(F(z) \) is \(q \)-valently close-to-convex for \(|z| < r_q \).

If \(F(z) \) is not regular on \(|z| = 1 \), there exists a \(p^* < 1 \) such that for \(p^* < \delta < 1 \) the function \(G_i(z) = F(\delta z) \) is in \(\mathcal{V}(p) \) and regular on \(|z| = 1 \). \(G_i'(z) = 0 \) for \(z = \alpha_i/\delta \). Thus, \(G_i(z) \) is \(q \)-valently close-to-convex for \(|z| < r_{q,\delta} \), where \(r_{q,\delta} \) is the least positive root of

\[J_{q,\delta}(r) = q - r \left[\frac{2p}{1 + r} + \sum_{i=1}^{p-q} \frac{\delta}{|\alpha_i| - r\delta} + \frac{|\alpha_i|}{\delta - |\alpha_i|r} \right]. \]

Thus, there exists

\[f_i(z) = C_q z^q + \ldots \quad (|z| < r_{q,\delta}, \quad |C_q| = 1) \]

\(q \)-valently star-like for \(|z| < r_{q,\delta} \) such that

\[\Re \left[\frac{z G_i'(z)}{f_i(z)} \right] > 0 \quad \text{for } |z| < r_{q,\delta}. \]

But \(r_{q,\delta} \geq r_q \), since \(J_{q,\delta}(r) \geq J_q(r) \) for \(r < \min|\alpha_i| \). Thus \(f_i(z) \) is \(q \)-valently star-like for \(|z| < r_q \).

By a result of M. Cartwright [1] the family of \(q \)-valent functions \(f(z) = a_q z^q + \ldots \) (\(|a_q| = 1 \)) is a normal family. Thus we may choose an increasing sequence \(\delta_i \) tending to 1, such that the functions \(f_i(z) \) tend to a function \(f(z) \), which is \(q \)-valently star-like for \(|z| < r_q \). Since for each \(i \),

\[\Re \left[\frac{z G_i'(z)}{f_i(z)} \right] > 0 \quad \text{for } |z| < r_q \]

and since \(z G_i'(z) \) tends to \(z F'(z) \), we have

\[\Re \left[\frac{z F'(z)}{f(z)} \right] \geq 0 \quad \text{for } |z| < r_q. \]
Thus either \(\text{Re}\left[\frac{zF'(z)}{f(z)}\right] > 0 \) for \(|z| < r_q\), in which case \(F(z) \) is \(q \)-valently close-to-convex for \(|z| < r_q\), or \(\left|\frac{zF'(z)}{f(z)}\right| \) reduces to a constant for \(|z| < r_q\). In the second case \(F(z) \) is \(q \)-valently convex and hence \(q \)-valently close-to-convex for \(|z| < r_q\).

Theorem 7. Let

\[
F(z) = a_qz^q + \cdots \quad (|z| < 1),
\]

be in \(\mathcal{S}(p) \), then \(F(z) \) is \(q \)-valently convex for \(|z| < \beta_q\), where \(\beta_q \) is the least positive root of

\[
K_q(r) = J_q(r) - \frac{2r}{1 - r^2}
\]

and this estimate is the best possible.

Proof. Let us first assume that \(F(z) \) is regular on \(|z| = 1\). Then, as we have seen before, there exists

\[
g(z) = b_qz^q + \cdots \quad (|z| < 1),
\]

which is in \(S(p) \) for \(|z| < 1\), such that

\[
\text{Re}\left[\frac{zF'(z)}{g(z)} \right] > 0 \quad \text{for} \quad |z| \leq 1.
\]

Let

\[
\frac{zF'(z)}{g(z)} = P(z), \quad \text{Re}[P(z)] > 0 \quad \text{for} \quad |z| \leq 1,
\]

\[
1 + \frac{zF''(z)}{F'(z)} = \frac{zP''(z)}{P(z)} + \frac{zg'(z)}{g(z)}.
\]

Now \(g(z) \) has the same zeros as \(F'(z) \). Therefore,

\[
\text{Re}\left[\frac{zg'(z)}{g(z)} \right] \geq J_q(r) \quad \text{for} \quad r < \min|\alpha_i|.
\]

By a result, obtained independently by Libera [6], MacGregor [7] and Robertson [10], we have

\[
\text{Re}\left[\frac{zP'(z)}{P(z)} \right] \geq -\frac{2r}{1 - r^2}.
\]

Thus

\[
\text{Re}\left[1 + \frac{zF''(z)}{F'(z)} \right] \geq -\frac{2r}{1 - r^2} + J_q(r) = K_q(r)
\]

for \(r < \min|\alpha_i| \).

Thus, if \(|z| < \beta_q\)
Since $F'(z)$ has $(q - 1)$ zeros in $|z| < \beta_q$, all of them at the origin,

$$
\int_{0}^{2\pi} \Re \left[1 + \frac{zF''(z)}{F'(z)} \right] d\theta = 2q\pi \quad (|z| < \beta_q).
$$

Thus $F(z)$ is q-valently convex for $|z| < \beta_q$.

Arguing as in Theorem 6, we may remove the assumption of regularity on $|z| = 1$.

The function

$$
F(z) = \int_{0}^{z} \frac{(1 + z)z^{q-1} \prod_{i=1}^{p-q} \left(1 + \frac{z}{|\alpha_i|} \right)}{(1 - z)^{2q+1}} dz
$$

shows that the radius found is sharp, since

$$
1 + \frac{zF''(z)}{F'(z)} = K_q(r)
$$

for $z = -r$, $r < \min |\alpha_i|$.

REFERENCES

Lafayette College,
Easton, Pennsylvania