On the degree of convergence of extremal polynomials and other extremal functions
HTML articles powered by AMS MathViewer
- by J. L. Walsh and A. Sinclair
- Trans. Amer. Math. Soc. 115 (1965), 145-160
- DOI: https://doi.org/10.1090/S0002-9947-1965-0199419-X
- PDF | Request permission
References
- L. V. Ahlfors, Variational methods in function theory, Lecture notes, Harvard University, Cambridge, Mass., 1953.
- S. Ja. Al′per, Approximation of analytic functions in the mean over a region, Soviet Math. Dokl. 2 (1961), 36–39. MR 0116100 L. Bieberbach, Zur Theorie und Praxis der konformen Abbildung, Rend. Circ. Mat. Palermo 38 (1914), 98-118.
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- J. L. Doob, A minimum problem in the theory of analytic functions, Duke Math. J. 8 (1941), 413–424. MR 4885
- O. J. Farrell, On approximation to an analytic function by polynomials, Bull. Amer. Math. Soc. 40 (1934), no. 12, 908–914. MR 1562998, DOI 10.1090/S0002-9904-1934-06002-6
- P. R. Garabedian, The classes $L_p$ and conformal mapping, Trans. Amer. Math. Soc. 69 (1950), 392–415. MR 39072, DOI 10.1090/S0002-9947-1950-0039072-8
- Olof Hanner, On the uniform convexity of $L^p$ and $l^p$, Ark. Mat. 3 (1956), 239–244. MR 77087, DOI 10.1007/BF02589410 G. Julia, Leçons sur la représentation conforme des aires simplement connexes, Gauthierr-Villars, Paris, 1931. S. Kakeya, General mean modulus of analytic functions, Proc. Phys.-Math. Soc. Japan (3) 3 (1921), 48-58. M. Keldyš and M. Lavrentieff, Sur la représentation conforme, C. R. Acad. Sci. URSS 1 (1935), 87-88.
- M. Keldych, Sur l’approximation en moyenne quadratique des fonctions analytiques, Rec. Math. [Mat. Sbornik] N.S. 5 (47) (1939), 391–401 (French, with Russian summary). MR 0002591
- A. J. Macintyre and W. W. Rogosinski, Extremum problems in the theory of analytic functions, Acta Math. 82 (1950), 275–325. MR 36314, DOI 10.1007/BF02398280
- Jacqueline Penez, Approximation by boundary values of analytic functions, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 240–243. MR 61163, DOI 10.1073/pnas.40.4.240 F. Riesz and M. Riesz, Über die Randwerte einer analytischen Funktion, C. R. 4th Congr. Math. Scand., 1916, pp. 27-44, Uppsala, 1920.
- W. W. Rogosinski and H. S. Shapiro, On certain extremum problems for analytic functions, Acta Math. 90 (1953), 287–318. MR 59354, DOI 10.1007/BF02392438 P. C. Rosenbloom and S. E. Warschawski, A division problem for analytic functions, Seminars on analytic functions, Vol. 1, Institute for Advanced Study, Princeton, N. J., 1957.
- W. E. Sewell, Degree of Approximation by Polynomials in the Complex Domain, Annals of Mathematics Studies, No. 9, Princeton University Press, Princeton, N. J., 1942. MR 0007054
- Harold S. Shapiro, Applications of normed linear spaces to function-theoretic extremal problems, Lectures on functions of a complex variable, University of Michigan Press, Ann Arbor, Mich., 1955, pp. 399–404. MR 0070718 V. Smirnoff, Sur les formules de Cauchy et de Green et quelques problèmes que s’y rattachent, Bull. Acad. Sci. USSR Ser. Math. 7 (1932), 337-371.
- A. Spitzbart, Approximation in the sense of least $p$th powers with a single auxiliary condition of interpolation, Bull. Amer. Math. Soc. 52 (1946), 338–346. MR 15483, DOI 10.1090/S0002-9904-1946-08579-1
- J. L. Walsh, Interpolation and approximation by rational functions in the complex domain, 3rd ed., American Mathematical Society Colloquium Publications, Vol. XX, American Mathematical Society, Providence, R.I., 1960. MR 0218587
- J. L. Walsh, Note on invariance of degree of polynomial and trigonometric approximation under change of independent variable, Proc. Nat. Acad. Sci. U.S.A. 45 (1959), 1528–1533. MR 123869, DOI 10.1073/pnas.45.10.1528
- J. L. Walsh, Note on least-square approximation to an analytic function by polynomials, as measured by a surface integral, Proc. Amer. Math. Soc. 10 (1959), 273–279. MR 123725, DOI 10.1090/S0002-9939-1959-0123725-0
- J. L. Walsh and H. G. Russell, Integrated continuity conditions and degree of approximation by polynomials or by bounded analytic functions, Trans. Amer. Math. Soc. 92 (1959), 355–370. MR 108595, DOI 10.1090/S0002-9947-1959-0108595-3
- J. L. Walsh and H. G. Russel, On simultaneous interpolation and approximation by functions analytic in a given region, Trans. Amer. Math. Soc. 69 (1950), 416–439. MR 41212, DOI 10.1090/S0002-9947-1950-0041212-1
- J. L. Walsh, Degree of polynomial approximation to an analytic function as measured by a surface integral, Proc. Nat. Acad. Sci. U.S.A. 48 (1962), 26–32. MR 132331, DOI 10.1073/pnas.48.1.26 A. C. Zaanen, Linear analysis, North-Holland, Amsterdam, 1953.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 115 (1965), 145-160
- MSC: Primary 30.70
- DOI: https://doi.org/10.1090/S0002-9947-1965-0199419-X
- MathSciNet review: 0199419