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1. Introduction. Let S3 be any category. An object BES* is called a

group in S3 (or, more strictly, is given a structure of a group in S3) if for

any AES3 the set Hom(A,B) is given a group structure, such that for

any /:A' —A" the induced map /*:Hom(A",B)^Hom(A',B) is a

homomorphism. Of course not every object of S3 can be so structured.

Dually, an object A E^f is called a co-group if it is a group in the dual

category, i.e., for each BES3, Hom(A,B) is given a group structure, such

that for any g:B'^B" the induced map g„ : Hom(A,B') ->Hom(A,B")

is a homomorphism. The importance of groups and co-groups in different

categories has been emphasized in [2].

In the category J7~H of based topological spaces and homotopy classes

of maps, the co-groups are the so-called B'-spaces(2) (e.g. any suspension

is such an B'-space). The following facts are well known.

(1) The fundamental group functor tx (for spaces with "nice" base

point) preserves free products (in 3~H the free product is the wedge of

spaces X V y and *y(X V Y) = *xiX) *rxiY)).

(2) The fundamental group of an H' -space is free.

Now, in a category with zero maps and free products a more direct and

workable definition of co-groups may be given (see Definition 2.1). It

follows from it that if a functor between two categories preserves free prod-

ucts, it also preserves co-groups. Therefore, the "categorical" explanation

of (2) in view of (1) follows from a result of D. M. Kan [ 4], who has proved

that a co-group in the category f& of groups is always a free group. Kan's

theorem shows that the co-group structure of G E & completely deter-

mines a set of free generators of G (the so called "primitive" elements).

On the other hand it is a fact that

(1') The Pontrjagin algebra of the loop space H*iQ;K), where K is a

field, is another functor which preserves free products (since no published

proof of this probably well-known result is known to the author, we shall

give one in §3).  Moreover,

(2') The Bott-Samelson theorem [l] states that H*iQ2X;K) (2 being

the suspension functor) is a free algebra (generated by H*iX;K)).

The aim of this paper is to prove some purely algebraic results which
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will enable us to derive (2') from (1') in the same way as the result of Kan

gives the possibility of deriving (2) from (1).

Kan's theorem quoted above has been later extended in a slightly

weakened form to the more general case when no associativity is required

[3]. Certain of our results will also hold for "co-multiplicative objects" i3)

rather than for co-groups. The definition of a co-multiplicative object

(c.-m. object) may be obtained from the above definition of a co-group by

replacing the words "group structure" by "structure of a multiplicative

system with two-sided unit." Again a more convenient equivalent def-

inition will be given in §2.

Let J2# be the category of connected graded associative algebras over a

commutative ring A and let S#H be the "primitive" [2, Part II] category

of c.-m. objects in -Of.  Our first main result is

Theorem 1.1. There exists a functor N : J&n—>-^ iwhere ^ is the category

of positively graded modules over A) such that

(i) 7V(A) is a submodule of A iA(E J&h) called the module of normed ele-

ments and

(ii) as an algebra, A is freely generated by NiA), i.e., A = T(/V(A)), where

TiN) is the tensor algebra of N; in particular, any object of £0H is a free

algebra.

In the case of co-groups we have a more precise statement. Let S$G be

the category of co-groups in _9f and let Sé be the category of connected

graded co-associative co-algebras (with co-unit)  over A.

Theorem 1.2. There exist two covariant functors S: J&G^>Sf and TG:

Sf^> S#g such that

(i) both compositions TGS and STG are equal to the identity,

(ii) SiA) for A G -&g is precisely the submodule of normed elements of

A, and
(iii) as an algebra, TGiSiA)) is the free itensor) algebra generated by SiA).

Thus, in particular, SrfG and Sf are category isomorphic.

The strength of Theorem 1.2 resides in the fact that the co-algebra

structure of SiA) completely determines the co-group structure of A and

conversely. The precise way in which this is done will be described in §2.

Since the elements of SiA) are "semi-primitive" in a certain sense, The-

orem 1.2 is the analogue for algebras of Kan's theorem [ 4].

Let now A = X be a field and suppose that _P/ is the category of con-

nected graded algebras over X, of finite type. Let C* be the dual algebra

of the co-algebra C.

í3) fi'-objects in the terminology of [2].
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Corollary 1.3. The contravariant functor S*:-£#G—>J& defined by

S*iA) = (S(A))* establishes an anti-isomorphism between the two categories.

Let Y be a topological space with finitely generated homology, and let

2 Y be the (reduced) suspension of Y. It is well known that 2 Y is a co-

group in 3H; as shown in the proof of Corollary 3.3 this co-group structure

induces a canonical co-group structure in the Pontrjagin algebra of the

loop space Í22Y of 2 Y (provided we use a field X of coefficients or no

torsion is present).

Corollary 1.4. S*(Z/*(fi2Y,X)) = //*(Y,X), the latter being the co-

homology algebra of Y.

§2 contains the main definitions used in the paper and also the proof of

the results stated above (modulo two key lemmas, whose proof is relegated

to the completely technical §4). §3 is devoted to the topological implication

of our results.

2. Definitions and proof of the theorems. A category Sf is said to possess

zero maps (morphisms) if for each A,B, G Sf, the set Hom(A,/i) contains

a distinguished element 0 satisfying 0/ = 0, gO = 0 for all /£ Hom(A',A),

g£Hom(J3,/3').

We shall denote by 1 both the identity functor (in any category) and

the identity map (of any object).

Let Ax,A2ESf. A free (or inverse) product [2] of the objects AX,A2

is an object Q and a pair of maps i¡ :Aj—*Q, j = 1,2, such that for any X

EiSf and any two maps /,: A;—>X, _/ = 1,2, there exists a unique map /:

Q-*X with fij = fj. We write f={fx,f2); thus ifuh)ij = fj. The free
product, if it exists, is unique up to an equivalence. We will denote by

Ax * A2 an arbitrary respresentative of the class of equivalent free products

of AX,A2. The free product is associative in the obvious sense. If g¡:

Aj-^Aj, j = 1,2, we write gx*g2 for the map (i\gy,i2g2)-- A'X*A'2^>AX*A2.

From now on Sf will be a category with zero maps and free products.

The following definitions are equivalent to the ones given in Introduction

[2, Part I, Theorem 4.6].

Definition 2.1.  A co-multiplication on A E.Sf is a map

*: A—>A *A

such that <1,0>* = <0,1)$=1:A->A. The pair (A,*) will be then

called a co-multiplicative object (c.-m. object). A co-multiplication $ is

associative if

(1*4>)* = (** 1)*: A-->A *A *A.

* has an inverse »:A—>A if ( », 1 ) $ = ( 1, » ) * = 0. If 3> is associative and

has an inverse, then (A,4>) is called a co-group.
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If (A',*') and (A",$") are c.-m. objects in if, a map f:A'^A" is a

homomorphism if $"/=(/*/)*'• The category of all c.-m. objects in Sf

and their homomorphisms will be denoted by 5fH; the corresponding

category of co-groups will be denoted by SfG; obviously if g C SfH.

Example 2.2. In the category 3~H of based topological spaces, the free

product is the wedge X V Y (union with a common base-point). A co-

multiplication * in 3~n is a map 4>:X—»X VX, such that rfi-^rfl-^ 1:

X—>X, where rx,r2: X \/ X—>Xare the retractions onto the two factors.

Let now A be a fixed commutative ring and S3 the category of connected

associative graded algebras over A. Any A E ^3 is provided with an

augmentation e: A—>A which maps A0 (the module of elements of degree

0) isomorphically onto A and which vanishes on elements of positive degree;

we denote Kere by A. Any map / in J3 satisfies «/= t; the zero map 0:

A-^B,A,BE^ is characterized by 0(A) =0.

If N is a positively graded A-module we denote by T(iST) the tensor

algebra of N.

In order to be able to describe in a convenient way the free product in S3

we shall introduce first some notations which will be used throughout

the paper.

Let a,ß be any two symbols. A sequence of the form ia,ß,a,ß, •••) or

iß,a,ß,a, ••■) will be called alternating. There are exactly two alternating

sequences of length ra: the first starting with a and the second starting

with ß. The set of all alternating sequences will be denoted by 3? = 3êia, ß).

If I = iiy, ■••,in),   J = Hi, •••,jp)   are   two   alternating  sequences, define

,„     v IV J=  ih,---,L jl,---,jp)       Í£Í„féjy,
(2.1)

I\/J= (¿!, • • -, imj2, ■ ■ -Jp)    if i„ = 7*i.

If /G-^(1,2) set

(2.2) A; = An ® ■ ■ ■ ® A~n, / = iiy, ■ ■ -, i„).

Define, for Ax,A2E-&

(2.3) A1*A2=A-|-2A/,        /G^(l,2).

Ax*A2 has the obvious grading and augmentation; it can be converted

into an algebra by means of the multiplication

plij:A¡® Aj-tAjyj,

where m/j is the canonical isomorphism if ¿„ ¿¿ jx and is induced by the

multiplication Ain® A^—^A^ and the identity on the other factors if ¿„

= jx. If we define ik:Ak—>Ax*A2, A = 1,2, as the obvious imbeddings,

all the axioms of a free product are satisfied. For instance, if fk:Ak—>B,

A =1,2, then (fx,f2)\A¡,IE3? is defined as being the composition
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ä/^-®Kb®...®b-^b,

where p' is the multiplication in B. In particular,

<1,0)|A + A1:A + A1«A1,

(0,1)|A + A2:A + A2^A2,

all the other summands being mapped onto zero.

We now adopt the following convention: if a G A we use a prime sign

(a') in order to indicate that a belongs to the first factor of A * A and a

double prime sign (a") in order to indicate that a belongs to the second

factor.  The following is a consequence of Definition 2.1  and of (2.4).

Proposition 2.3. A co-multiplication on AE-& is a map $:A—>A*A

satisfying

*(a) = a' + a" + b,        6G2A,,    iERi',"),       \I\ è 2

iwhere |/| is the length of the sequence I) for all aEA (6 depends on a).

For AjEJtf, 7 = 1,2, define kj-.Aj^Ax® A2 by kxiax) = ax® l^Aa^
= 1 ® a2. Then

w = (kx,k2): AX*A2^>AX® A2

maps the free product of algebras onto their tensor product. If $>: A —> A * A

is a co-multiplication, then the "diagonal map" A = u)3> converts A to a

Hopf algebra called the underlying Hopf algebra of (A,$). On the other

hand if u: iA*A)® iA*A)^>A*A is the multiplication in A*A and

i¡: A—>A *A, j = 1,2, are the two imbeddings, then

(2.5) p = piix ® ¿a) A = m(i'i ® t'íDto* : A -► A * A

is a map of graded modules.

Theorem 1.1 is an immediate consequence of the following

Lemma 2.4. For any c.-m. object (A,*), AE-&, we can define in a

canonical way a submodule NQA such that A is freely generated by N, i.e.,

A = TiN);  if f:iAx,$x)-+iA2,<b2)  is a homomorphism  then  fiNJCN*

The elements aEN are called normed. The construction of normed

elements and the proof of Lemma 2.4 will be obtained in §4 by induction

on the degree.

Let S = Ker(* - p), where (A,i>) is a c.-m. object in _P/ and p is given

by (2.5). Since

(2.6) A(a) =a® l + l®a+ 2a¿® a¡,    aEA

for any a ES, we have

(2.6') *(a) = pia) = M(ii® ¿2)Ma) = a' + a" + 2afa/.
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Formula (2.6') suggests calling the elements of S semi-primitive.

Lemma 2.5. If * is associative then

(i) all normed elements are semi-primitive, i.e., N = S, and

(ii) S is a sub-co-algebra of the underlying Hopf algebra of (A,i>), i.e.,

aES implies that in (2.6) a¿,a,ES.

This lemma will also be proved in §4.

We are now able to prove Theorem 1.2.

Proof of Theorem 1.2. The functorial character of S = S(A) follows from

the fact that if /: (A,3>) —»(A',*') is a homomorphism of co-groups, *'/

= (/*/)$ and P'f= if*f)p and thus /(Ker(i> - p)) C Ker($' - p'). Lemma

2.5 together with Theorem 1.1 show us that as an algebra, A = T(iS(A)).

Given an arbitrary co-algebra CES3 with diagonal map A:C—>C® C,

let a: C—>TiQ be the canonical inclusion; define

A = (a ® a)Ä: C-* TiC) ® T(Q

and

P = uiix® ¿2)A:C-»T(0*T(C).

By universahty of the tensor algebra TiC), p can be extended to a unique

map of algebras

$:T(O^T(C)*T(C).

One easily checks that (a) * is co-multiplication and (b) TG(C) = (T(C),i>)

is a co-group in stf if and only if C is co-associative. Notice that the

canonical anti-automorphism v of the underlying Hopf algebra of TG(C)

serves as an inverse for TqÍQ; also, that the underlying Hopf algebra of

TG(0 is co-commutative if and only if C was co-commutative.

A co-multiplication

$:A—>A *A

is commutative if we have P4> = *, where P:A*A—>A*A is the per-

mutation of the two factors. Obviously, for a commutative * any semi-

primitive a is primitive, i.e., 4>(a) = a' -\-a". Thus we have

Corollary 2.6. A commutative co-group in Jtf is a free algebra generated

by the submodule of primitive elements. In particular, the underlying Hopf

algebra of A is also primitively generated.

3. Topological implications. We shall first prove the fact quoted in the

Introduction under (1')-

Let & be the category of c.s.s. groups. $ admits a free product Gx * G2,

GiE^, where iGx *Gz)q= GXq *G2q and the boundary and degeneracy

operators are defined in the obvious way. We shall consider homology

with coefficients in a field K.
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Theorem 3.1.   The homology functor H%: J^—> Jaf preserves free prod-

ucts, i.e., the map

(3.1) » = (iX',i2-):H,iGx)*H,iG2)^H,iGx*G9)

is an isomorphism ihere ij:Gj—:>Gx*G2, j = 1,2, are the inclusions).

Proof. Let A] = H^G), A~, = H*iG) (reduced homology), ; = 1,2. With

the notations of (2.3) define

BoCAC ••• CA.C ••• CA,»A¡

by setting

Do = X,        DX = K + A~X + A2,
(3.2)

Dn=Dx+lAj,       \J\ ^ n, n ^.2;

moreover,

(3.3) Lim. dir. Dn = AX*A2

and

(3.4) DjD^x = ÄIn + ÄJn,

where /„ and Jn axe the only alternating sequences of length n.

If J = Oi, •••Jk), we shall use the notations Gj= G;i X • • • X Gjk and

Gj = G,j A • • • A G;A (smashed product). By the Kiinneth formula we have

(3.5) Äj=H*iGJ).

On the other hand any gEGx*G2 admits a unique representation as a

reduced word g = xx---xk, e^xsEGjS. If Fn is the subcomplex of all

words of length ^ ra, we have

(3.6) //* iGx * G,) - Lim. dir. //*(F„) ;

for homology commutes with direct limits. For any sequence J = (/i, ■■•Jk),

k ^ n, define a map

toj: Gj^>Fn

by setting to^Xj, x2, • • •, *t) = xx • • ■ xk. The maps wj composed with the

natural splitting Aj—>//*(Gj) —»//»(Gj)  induce maps

Vn'-Dn^HtiFn)

such that the diagram ;

Dn-V-^HAFn)

(3.7) 1
Ax*A2—^>H*iGx*G2)
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is commutative (the vertical arrows are induced by inclusion). By (3.3)

and (3.6) it is enough to prove that for all ra, vn is an isomorphism. This

follows by repeated applications of the 5-lemma to the commutative

diagram

0 - Dn-► Dn+X-» A/n + Ajn-» 0

! "n+1

H,(F„)-*B,(FB+1) ->H*iFn+y/FJ = H*iGIn V Gjn).

The upper exact sequence (see (3.4)) obviously splits; the third vertical

arrow is an isomorphism by (3.5).

Corollary 3.2. If X¿, ¿ = 1,2, are spaces with "nice" base-point *ii.e.,

if * has in X, a neighborhood í/¿ u;A¿cA can be deformed in X, ¿rato * (rel * )),

then

H^iiliXy VXa)) « H,iüXx) *H*iQX2).

Proof. If S(X) denotes the singular complex of X and the base-points

are "nice", then

SiX.VXJ^SiXÙ VSiXJ.

Let SS be the category of connected c.s.s. complexes, and let G : .9^ —> ̂

be the Kan functor; according to [5] we have a natural equivalence of the

functors H*GS  and B*$2 and therefore

H*(a(Xy VXs)) = HAGSiXyV XJ)

= B*(G(S(X1)VS(X2)))

= B*(GS(X1)*GS(X2));

it suffices now to apply Theorem 3.1.

Corollary 3.3 (Bott-Samelson). If (X, $>) is a co-multiplicative object

in 3~H ii.e., X is a space of normalized Lusternik-Schnirelman category = 1)

iAera B*(SîX) is a free algebra. If 3> is (¡wmotopy) associative, then B*(fiX)

is freely generated by Ker[(i2$)^ — pj, where

p = p.iQix X Í2¿2)A: Í2X->Í2(X VX)

and A: QX—>nXXQX is the diagonal map, i¡: Xy—>XxX, j = 1,2, are

the inclusions and p. is the multiplication of loops in Q(X VX).

Proof. 4? being as in Example 2.2 it follows from Corollary 3.2 that

(ß4>)* :B*(i2X)—>B*(Q(X VX)) is a co-multiplication and thus by apply-

ing Lemmas 2.4 and 2.5 we get the result.

Proof of Corollary 1.4. In the particular case when X is a suspension,

i.e., X = 2Y, we know from the original proof of the Bott-Samelson

theorem, that B*(ß2Y) is freely generated by the image of H*iY) un-
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der the imbedding e: Y—>ß2Y. It is easy to check directly that Ime*

CKer[(Q4>)* — pA and therefore by the second part of Corollary 3.3

Ime* = Ker[(Q$)* — p3. (In fact, the last relation admits also a purely

topological proof.) Since e* is a monomorphism, S(B*(Q2Y)) = B*(Y)

asa co-algebra and its dual S*(B*(Q2Y)) = (H«(Y))* = H*(Y) as an

algebra.

Remark 3.4. In the previous analysis we could have replaced the use of

a coefficient field by integer coefficients, provided no torsion is present.

Remark 3.5. In the general case of a co-multiplicative object (X, $) in

3~H, the original proof of the Bott-Samelson theorem shows that B*(fiX)

= TiM), where M EH* (OX) is a submodule mapped isomorphically onto

H^iX) by the homology suspension a. We know on the other hand by

Theorem 1.1, that also B*(i2X) = TiN), where N is the module of normed

elements. This means that for any m E M, rai = ra + d, where nEN and d

is decomposable. Thus <r(m) = oin) and we can always normalize M by

choosing M = N. This normalization has the advantage that N is natural

with respect to maps of co-multiplicative objects, i.e., if /: iXx, $0 —» (X2,4>2)

then inf)*iNx)EN2.

4. Proof of the key lemmas. Recall that we have denoted by 3enia,ß) the

set of all alternating sequences on length ra formed by using the symbols

a and ß. For a fixed n,3?nia,ß) consists of exactly two elements: one

sequence ia,ß,a, ■ ■ ■) starting with a and another sequence Sn = iß,a,ß, • ■ ■)

starting with ß. The sequences Sn, n = 2, will be called special; 3*ia,ß)

will denote the set of all special sequences of any length (¿2).

Let now a,ß,y, ••• be any finite set of symobols and let ßnia,ß,y, •••)

denote the set of all sequences of length ra formed by using these symbols.

A sequence / E ^/n(a,|8, Y, •••) is mixed if all the possible symbols occur

in I. The set of all mixed sequences of length ra will be denoted by

JCnia,ß,y, •••).   Finally

r/ia,ß,y,--.) = öi/nicx,ß,y,---),
n

3tia,ß,y, • • •) = U Jtnia,ß,y, ■ ■ ■).
n

Obviously  3enia,ß)E^Aa,ß),  n = 2.
Let N' and N" be two positively graded modules over a fixed com-

mutative ring A and let TiN'), TiN") and TiN' + N") denote the tensor

algebras of the corresponding modules. We have then the natural isomor-

phism

( Tiiy),THJ ) : TiN') * TiN") « T(N' + N"),

ixia) = ia,0),       i2ib) = iO,b),       aEN',   bEN",
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whereby the two sides may be identified. Thus

(4.01) TiN') * TiN") = A + 2/Yj,       J<E/i', "),

where

(4.02) Nj = m® • • • ® NJ\       J = 0'i, • • -,7'J•

Let (A,$) be a co-multiplicative object in stf and let Ap denote the

homogeneous component of A of degree p. We now proceed to give an

inductive definition of the module N of normed elements. Let us assume

that N H A1 = A1 and that NP = NÇ\AP has been defined for all p á k - 1.

Let /V(t_D = TV1 +-h iV*"1. The imbedding JV(*-i) G A can be extended

to a unique algebra homomorphism

ra:T(A/)^A

(we shall omit the subscript in N(k-X), since this cannot lead to confusion).

Our inductive hypothesis is

(2.4*.,) n| T(N)' ■■ TiN)p « A",       p g k - 1.

As a consequence of (2.4*_i) we can identify (A/)*, IE &i',"), with |/|

= length 1^2, with a sum of form (Z-W</)*> JE-^i',").   This  yields

(4.03) (A*A)* = A'* + A"*+(ZAÜ,       c/G^C")

and correspondingly, for aEAk

(4.04) <t>(a) = a' + a" + Z<Ma), where *M ENj,    JE M', ")■

We shall always write i>r instead of $sr, where Sr is the unique special

sequence of length r formed from the symbols ' and ".

Definition Nk. An element a G A' is normed if in (4.04), $s(a) = 0 for

alls ^ 2.

The tensor algebra TiN) is bigraded TiN) = ^Fpk, where the first

degree of ra!® • • • ® np is p and its second degree is degnx + • ■ • +degrap.

TiN)*TiN) = TiN' + N")='ZNj is also bigraded by Z0"*- Let V
= < 1,1 ) : TiN') * TiN") -» TiN) be the "folding" map. The foUowing
properties are easily checked

(4.1) *S(A*) G G8*;

(4.2) íXíDcZG";

(4.3) VÍG"*) CF"k;

(4.4) V is a monomorphism when restricted to any Nj.

By (4.1)  and (4.2) we have

(4.5) *AniFpk)) = 0    ifs<p;

moreover, it follows easily from the definition of $ that
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(4.6) \7*Ania))=a   ifaGF*.

Proof of Proposition 2.3*.  (i)  ra:T(/V)*-*A* is onto.   Let a G A*;  set

ax = a, as = as_i — ra V$s(as_!), s^2. By (4.1) and (4.3) we have

(4.7) Vcp^G/^;

therefore, by (4.5),

(4.8) #„,(» Ví.ío..!» = 0   and thus $m(as) = *m(as-i)    for m<s.

Let us assume as an induction hypothesis that $„(0^!) = 0 for all m ^ s — 1;

it follows that from (4.8) then *m(as) = 0 for all m <s. But according to

(4.7) and to (4.6)

V<Ds(as) = V*s(as_!) - V^Ví.ía.-j) = 0.

By 4.4 this proves in particular that

(4.9) $miak) =0    for all m ^ k;

since on the other hand G"1* = 0 for m > k it follows from (4.1) that ak is

normed. This completes the proof of (i) since a — ah lies in the image of ra

by construction.

(ii) ra : T(/V)*—> A* is a monomorphism. Let a E kern, 0 = 0* + • • • + ah,

aJEFjk. Obviously ^(«(o1)) = ^(a1) = 0 for s^2 (since Flk = Nk). By

(4.5) and (4.6), a2 = Vfynia2) = V$2ra(a) = 0. In the same way, by

applying successively V$3, V*4, we prove that as = 0 for all s^2 and

therefore a = a1ENk. Since ra|iV* is the identity, ra(a) = 0 implies a = 0.

In order to prove Lemma 2.5 we shall use the notation described at the

beginning of this section. By definition, -^,(1,2,3) = JCA1,2,"S) for ra è 4

and -^(1,2,3) = ^(1,2,3) — {(1,2,3)} (we exclude the increasing se-

quence (1,2,3)).  Let us define the maps

,       > *:-^(l,2,3)-uril(l,2),
(4.10)

+ :yKil,2,3)->Jtail,2)

by

</>((¿i, • • -, in)) = On • • • Jn),       jk = max (1V1,1),

iiiiu ■ ■ -, in)) = Oi. • • -Jn),       jk = min iik, 2).

Consider the weakest equivalence relation on ^„(1,2) compatible with

the relation Kx~ X2 if Kx = <t>il),K2= HI) for the same /6-^(1,2,3).

Lemma 4.1. All the elements of JCA1,2) are equivalent under the above

relation.

Proof. For ra = 3 the proof is obtained by direct verification. If ra > 3,

let K = ikx, • • • A), M = imx, ■■■,mn), kh m¿ = 1 or 2.  If k¡ ̂  m¡ for all i,
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then X~M; indeed L = (lx, ••-,lk), where ¿, = A; + m,-— 1 satisfies <j>iL)
= K, rPiL) = M.

(i) If for some i, A¡ = m¡ = 1, set ls = max(As, ms). Then L = ilx,..., O

E 3tni\,2) and by the previous remark K~ L~ M. If for some ¿, A,

= m¡ = 2, set ¿s = min(As, rais) and again K ~ L ~ M.

(ii) Assume now that for all ¿, A, ?¿ /re¿. Since ra = 3 we may assume that

one of the sequences K or M, say X, contains the symbol 1 at least twice.

By replacing one of these l's by 2 we get another sequence K' such that

K ~ K' and we are able to apply (i) to K' and M.

Lemma 2.5 will be easily deduced from the following

Lemma 4.2. If (A, $) is an associative c.-m. object in A and N is the module

of all normed elements then any aEN is semi-primitive, i.e, 4>(a) = a' + a"

+ I>i<. where a\ E N',   af E N".

Proof of Lemma 4.2. According to Lemma 2.4, A = TiN) and there-

fore by (4.1)

A*A = TiN') + TiN") + ZNj,    JE^H, 2),

A*A*A = TiN') + TiN") + TiN'") +lJVK + ^iVL,

where KEJt-H,2) \JJ((l,Z) \J JCi2,2>) and ¿£^(1,2,3)  (for technical
reasons we write 1 for ', 2 for " and 3 for '").

Let aEN.   Then

(4> * l)$(a) = a' + a" + a'" + X/k(o) + Zfda),

(1 * 4»)$(a) = a' + a" + a'" + ZSkÍo) + Zsda),

where fKia), gKio) E NK, /L(a), gLia) E NL. By associativity of * we must

have

(4.11) ÍLÍa)=gLia),       LEMl,2,3).

Lemma 4.2 will be proved by proving for all A and s, s = A, the following

statement

(4.2.A.S.) 4v(a)=0,       JEJ-nH,2),     J*Ü,2)

for a E Np, p = A - 1 and all ra = 2 and for a E Nk, 2 = ra ̂  s.

Since for any A, (4.2.A — l.A — 1) and (4.2.A.s), s = 1,2, are clearly

equivalent, it will be enough to use induction on s. (4.2.1.1) being trivial

we shall assume (4.2.A.S — 1), s = 3 and prove (4.2.A.S.).

First we shall notice that any bE iNj)k, JE Jtil,2) is a sum of prod-

ucts of elements lying in N'Pi or N"Pi with all p¡ £k — 1. This enables us

by (4.2.A.S — 1)   to  assume  in  computing  ($*1)(6)   and (1 *$)(&), that

(4.12) 9(a) = a' + a" + £a¡af.

On the other hand it follows from the definition of * and that of the
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maps <f> and \p in (4.10) that if the sequences J and L have the same length,

i.e., |J| =\L\  and JEMl,2),  LG4l,2,3),

/ i**l)LiNj)=0       ifJ*<t,iL),    \J\=\L\,
(4.13)

i**l)L\NtiL):Nm~NL,

and analogously

il*<t>)LiNj) = 0   ifJ^(L),     \J\=\L\,
(4.13')

U*^)l\NML):NHL)^Nl.

By (4.12) we have for any aENk

(4> * l)4>(1,2)(a) = *(i,3)(a) + *(2,3)(a) + *(i,2,3)(a),

(4.14)
(1 *4>)*(i,2)(a) = $(i,2)(a) + *(i,3)(a) + 4>(i,2,3)(a).

Now the remark that by (4.2.A.S — 1) the only Qjia), with \J\ <s which

can be ¿¿0 for aENk is 4>(i,2)(a), yields together with (4.14) and the first

fines of (4.13) and (4.13')

ÍJ1Ei /i.(a) = (4>*l)LWa),

(4.15)
gda) = (1 *4>)L<tV(L)(a),       LE -^H,2,3)

(where-^(1,2,3) is the set of all mixed sequences with the exception of

(1,2,3)). By using now (4.11) and the second lines of (4.13) and (4.13')

and by referring to the definition of equivalence of sequences used in

Lemma 4.1, we get that *j(a) = 0 implies that $#(<*) = 0 if «7~ K. But,

by Lemma 4.1 all sequences in ^,(1,2) are equivalent and by definition

of normed elements, at least for one sequence JE -^",(1,2), we have

<Ma) = 0; thus <tjia) = 0 for all J. This completes the proof of (4.2.A.S.)

and of Lemma 4.2.

Proof of Lemma 2.5. According to Lemma 4.2, if aEN, $(a) has the form

(4.12) with aiEN', a" EN". An easy computation based on (2.5) shows

that $(a) = pia) (see (2.6) and (2.6')) and thus a ES. The second part

of Lemma 2.5 is an immediate consequence of the fact that N is a co-

algebra.
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