The Wiener integral and the Schrödinger operator
Author:
Donald Babbitt
Journal:
Trans. Amer. Math. Soc. 116 (1965), 66-78
MSC:
Primary 35.77; Secondary 35.06
DOI:
https://doi.org/10.1090/S0002-9947-1965-0186926-9
Correction:
Trans. Amer. Math. Soc. 121 (1966), 549-552.
MathSciNet review:
0186926
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Donald Babbitt, The Wiener integral and perturbation theory of the Schrödinger operator, Bull. Amer. Math. Soc. 70 (1964), 254–259. MR 161180, DOI https://doi.org/10.1090/S0002-9904-1964-11106-X
- Donald G. Babbitt, A summation procedure for certain Feynman integrals, J. Mathematical Phys. 4 (1963), 36–41. MR 144665, DOI https://doi.org/10.1063/1.1703885
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part II: Spectral theory. Self adjoint operators in Hilbert space, Interscience Publishers John Wiley & Sons New York-London, 1963. With the assistance of William G. Bade and Robert G. Bartle. MR 0188745
- E. B. Dynkin, Transformations of Markov processes connected with additive functionals, Proc. 4th Berkeley Sympos. Math. Statist. and Prob., Vol. II, Univ. California Press, Berkeley, Calif., 1961, pp. 117–142. MR 0141159
- E. B. Dynkin, Additive functionals of a Wiener process determined by stochastic integrals, Teor. Verojatnost. i Primenen. 5 (1960), 441–452 (Russian, with English summary). MR 0133163 ---, Markov processes and problems in analysis, Amer. Math. Soc. Transl. (2) 31 (1963), 1-24.
- Jacob Feldman, On the Schrödinger and heat equations for nonnegative potentials, Trans. Amer. Math. Soc. 108 (1963), 251–264. MR 160264, DOI https://doi.org/10.1090/S0002-9947-1963-0160264-0
- R. K. Getoor, Additive functionals of a Markov process, Pacific J. Math. 7 (1957), 1577–1591. MR 94850
- R. K. Getoor, Markov operators and their associated semi-groups, Pacific J. Math. 9 (1959), 449–472. MR 107297
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R. I., 1957. rev. ed. MR 0089373
- Teruo Ikebe and Tosio Kato, Uniqueness of the self-adjoint extension of singular elliptic differential operators, Arch. Rational Mech. Anal. 9 (1962), 77–92. MR 142894, DOI https://doi.org/10.1007/BF00253334
- Kiyosi Ito, On stochastic differential equations, Mem. Amer. Math. Soc. 4 (1951), 51. MR 40618
- Seizô Itô, Fundamental solutions of parabolic differential equations and boundary value problems, Jpn. J. Math. 27 (1957), 55–102. MR 98240, DOI https://doi.org/10.4099/jjm1924.27.0_55
- M. Kac, On some connections between probability theory and differential and integral equations, Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability, 1950, University of California Press, Berkeley and Los Angeles, 1951, pp. 189–215. MR 0045333
- Tosio Kato, Quadratic forms in Hilbert spaces and asymptotic perturbation series, Department of Mathematics, University of California, Berkeley, Calif., 1955. MR 0073958 L. Landau and E. Lipshitz, Quantum mechanics, non-relativistic theory, Addison-Wesley, Reading, Mass., 1958. Ju. Prokhorov, Convergence of random processes and limit theorems in probability theory, Appendix 2, Theor. Probability Appl. 1 (1956), 207-214.
- Daniel Ray, On spectra of second-order differential operators, Trans. Amer. Math. Soc. 77 (1954), 299–321. MR 66539, DOI https://doi.org/10.1090/S0002-9947-1954-0066539-2
- Kôsaku Yosida, On the fundamental solution of the parabolic equation in a Riemannian space, Osaka Math. J. 5 (1953), 65–74. MR 56177
Retrieve articles in Transactions of the American Mathematical Society with MSC: 35.77, 35.06
Retrieve articles in all journals with MSC: 35.77, 35.06
Additional Information
Article copyright:
© Copyright 1965
American Mathematical Society