Some types of Banach spaces, Hermitian operators, and Bade functionals
Author:
Earl Berkson
Journal:
Trans. Amer. Math. Soc. 116 (1965), 376-385
MSC:
Primary 47.40
DOI:
https://doi.org/10.1090/S0002-9947-1965-0187100-2
MathSciNet review:
0187100
Full-text PDF
References | Similar Articles | Additional Information
- [1] William G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345–360. MR 0073954, https://doi.org/10.1090/S0002-9947-1955-0073954-0
- [2] Earl Berkson, A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365–373. MR 0155192
- [3] N. Bourbaki, Eléments de mathématique. XV. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Sci. Ind., no. 1189, Herman & Cie, Paris, 1953 (French). MR 0054161
- [4] James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, https://doi.org/10.1090/S0002-9947-1936-1501880-4
- [5] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- [6] G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 0133024, https://doi.org/10.1090/S0002-9947-1961-0133024-2
- [7] G. Lumer, Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75–85. MR 0169074
- [8] D. Milman, On some criteria for the regularity of spaces of the type (B), C. R. (Doklady) Acad. Sci. URSS (N.S.) 20 (1938), 243-246.
- [9] B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, https://doi.org/10.1215/S0012-7094-39-00522-3
- [10] V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N. S.) 27 (1940), 643–648 (French). MR 0002704
- [11] Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 0084733, https://doi.org/10.1007/BF01186601
Retrieve articles in Transactions of the American Mathematical Society with MSC: 47.40
Retrieve articles in all journals with MSC: 47.40
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1965-0187100-2
Article copyright:
© Copyright 1965
American Mathematical Society