Some types of Banach spaces, Hermitian operators, and Bade functionals
HTML articles powered by AMS MathViewer
- by Earl Berkson
- Trans. Amer. Math. Soc. 116 (1965), 376-385
- DOI: https://doi.org/10.1090/S0002-9947-1965-0187100-2
- PDF | Request permission
References
- William G. Bade, On Boolean algebras of projections and algebras of operators, Trans. Amer. Math. Soc. 80 (1955), 345–360. MR 73954, DOI 10.1090/S0002-9947-1955-0073954-0
- Earl Berkson, A characterization of scalar type operators on reflexive Banach spaces, Pacific J. Math. 13 (1963), 365–373. MR 155192, DOI 10.2140/pjm.1963.13.365
- N. Bourbaki, Eléments de mathématique. XV. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre I: Espaces vectoriels topologiques sur un corps valué. Chapitre II: Ensembles convexes et espaces localement convexes, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 1189, Hermann & Cie, Paris, 1953 (French). MR 0054161
- James A. Clarkson, Uniformly convex spaces, Trans. Amer. Math. Soc. 40 (1936), no. 3, 396–414. MR 1501880, DOI 10.1090/S0002-9947-1936-1501880-4
- Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
- G. Lumer, Semi-inner-product spaces, Trans. Amer. Math. Soc. 100 (1961), 29–43. MR 133024, DOI 10.1090/S0002-9947-1961-0133024-2
- G. Lumer, Spectral operators, hermitian operators, and bounded groups, Acta Sci. Math. (Szeged) 25 (1964), 75–85. MR 169074 D. Milman, On some criteria for the regularity of spaces of the type (B), C. R. (Doklady) Acad. Sci. URSS (N.S.) 20 (1938), 243-246.
- B. J. Pettis, A proof that every uniformly convex space is reflexive, Duke Math. J. 5 (1939), no. 2, 249–253. MR 1546121, DOI 10.1215/S0012-7094-39-00522-3
- V. Šmulian, Sur la dérivabilité de la norme dans l’espace de Banach, C. R. (Doklady) Acad. Sci. URSS (N.S.) 27 (1940), 643–648 (French). MR 0002704
- Ivan Vidav, Eine metrische Kennzeichnung der selbstadjungierten Operatoren, Math. Z. 66 (1956), 121–128 (German). MR 84733, DOI 10.1007/BF01186601
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 116 (1965), 376-385
- MSC: Primary 47.40
- DOI: https://doi.org/10.1090/S0002-9947-1965-0187100-2
- MathSciNet review: 0187100