On the extreme eigenvalues of Toeplitz operators of the Hankel type II
HTML articles powered by AMS MathViewer
- by J. R. Davis
- Trans. Amer. Math. Soc. 116 (1965), 267-299
- DOI: https://doi.org/10.1090/S0002-9947-1965-0188789-4
- PDF | Request permission
References
- A. Erdélyi et al., Higher transcedental functions, Vol. II, McGraw-Hill, New York, 1953.
- I. I. Hirschman Jr., Variation diminishing Hankel transforms, J. Analyse Math. 8 (1960/61), 307–336. MR 157197, DOI 10.1007/BF02786854
- I. I. Hirschman Jr., Extreme eigen values of Toeplitz forms associated with Jacobi polynomials, Pacific J. Math. 14 (1964), 107–161. MR 161183, DOI 10.2140/pjm.1964.14.107
- M. Kac, W. L. Murdock, and G. Szegö, On the eigenvalues of certain Hermitian forms, J. Rational Mech. Anal. 2 (1953), 767–800. MR 59482, DOI 10.1512/iumj.1953.2.52034
- Seymour V. Parter, Extreme eigenvalues of Toeplitz forms and applications to elliptic difference equations, Trans. Amer. Math. Soc. 99 (1961), 153–192. MR 120492, DOI 10.1090/S0002-9947-1961-0120492-5
- Seymour V. Parter, On the extreme eigenvalues of truncated Toeplitz matrices, Bull. Amer. Math. Soc. 67 (1961), 191–196. MR 123183, DOI 10.1090/S0002-9904-1961-10563-6
- Seymour V. Parter, On the extreme eigenvalues of Toeplitz matrices, Trans. Amer. Math. Soc. 100 (1961), 263–276. MR 138981, DOI 10.1090/S0002-9947-1961-0138981-6
- Frédéric Riesz and Béla Sz.-Nagy, Leçons d’analyse fonctionnelle, Gauthier-Villars, Paris; Akadémiai Kiadó, Budapest, 1955 (French). 3ème éd. MR 0068139 E. C. Titchmarsh, Hankel transforms, Proc. London Math. Soc. 45(1922), 458-474. G. N. Watson, A treatise on the theory of Bessel functions, 2nd ed., Cambridge, 1962.
- Harold Widom, On the eigenvalues of certain Hermitian operators, Trans. Amer. Math. Soc. 88 (1958), 491–522. MR 98321, DOI 10.1090/S0002-9947-1958-0098321-8
- Harold Widom, Stable processes and integral equations, Trans. Amer. Math. Soc. 98 (1961), 430–449. MR 121882, DOI 10.1090/S0002-9947-1961-0121882-7
- Harold Widom, Extreme eigenvalues of translation kernels, Trans. Amer. Math. Soc. 100 (1961), 252–262. MR 138980, DOI 10.1090/S0002-9947-1961-0138980-4
- Harold Widom, Extreme eigenvalues of $N$-dimensional convolution operators, Trans. Amer. Math. Soc. 106 (1963), 391–414. MR 145294, DOI 10.1090/S0002-9947-1963-0145294-7
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 116 (1965), 267-299
- MSC: Primary 47.25
- DOI: https://doi.org/10.1090/S0002-9947-1965-0188789-4
- MathSciNet review: 0188789