On semicontinuous fuctions and Baire functions
HTML articles powered by AMS MathViewer
- by Robert E. Zink
- Trans. Amer. Math. Soc. 117 (1965), 1-9
- DOI: https://doi.org/10.1090/S0002-9947-1965-0169974-4
- PDF | Request permission
References
- Henry Blumberg, The measurable boundaries of an arbitrary function, Acta Math. 65 (1935), no. 1, 263–282. MR 1555405, DOI 10.1007/BF02420947 A. Denjoy, Sur les fonctions dérivées sommable, Bull. Soc. Math. France 43 (1916), 161-248.
- Casper Goffman, C. J. Neugebauer, and T. Nishiura, Density topology and approximate continuity, Duke Math. J. 28 (1961), 497–505. MR 137805
- Casper Goffman and Daniel Waterman, Approximately continuous transformations, Proc. Amer. Math. Soc. 12 (1961), 116–121. MR 120327, DOI 10.1090/S0002-9939-1961-0120327-6
- Otto Haupt and Christian Pauc, La topologie approximative de Denjoy envisagée comme vraie topologie, C. R. Acad. Sci. Paris 234 (1952), 390–392 (French). MR 46408
- Keiô Nagami, Baire sets, Borel sets and some typical semi-continuous functions, Nagoya Math. J. 7 (1954), 85–93. MR 69862, DOI 10.1017/S0027763000018079
- Robert E. Zink, A classification of measure spaces, Colloq. Math. 15 (1966), 275–285. MR 200403, DOI 10.4064/cm-15-2-275-285
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 117 (1965), 1-9
- MSC: Primary 28.20
- DOI: https://doi.org/10.1090/S0002-9947-1965-0169974-4
- MathSciNet review: 0169974