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1. Introduction. The theory of effective computability, which has developed

over the past thirty years, concerns two basic classes of binary relations: the

partial recursive functions (p.r.f.'s) and the recursive functions, those p.r.f.'s

which are totally defined. Regardless of the particular method of formalization

used, the same relations turn out to be p.r.f.'s, and the same total functions

turn out to be recursive functions.

One property of the partial recursive functions is that they can be indexed in

an effective manner, i.e., one can establish a one-one correspondence between

the non-negative integers and instructions for computing p.r.f.'s such that, given

an index, one can effectively produce the corresponding instructions for computing

the p.r.f. and, given a set of instructions, one can effectively find its index. The

class of recursive functions cannot be so indexed; this is one of the basic theorems

of recursive function theory.

One might feel that there would be a more constructive aspect to a class of

effectively computable total functions which could be indexed in a suitable manner.

One subclass of the recursive functions which can be suitably indexed is the class

of partial recursive functions which can be proved to be total in a given axiomatic

system S(2).

Such functions will be called provable recursive functions. Since the theorems

of S can be effectively enumerated, one can effectively establish a one-one cor-

respondence between appropriate instructions for computing provable recursive

functions and the non-negative integers.

This paper will be concerned with the relationship of the provable recursive

functions to the recursive functions. A theory of provable functions, analogous

to the theory of recursive functions will be developed with particular emphasis on
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recursive functions, October 27, 1962, under the title of Proof indices and recursion properties of

provable recursive functions, January 24, 1963, under the title of Elementary properties of
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the similarities and differences between the new theory and recursive function

theory. Suitable analogues for the various concepts of recursive function theory

will be exhibited when they exist.

The notion of a p.r.f. which can be proved to be total in Peano arithmetic was

considered by Kreisel in 1952 [9]. In 1958, Kreisel showed [10] that the same

class of functions can be proved to be total in the intuitionistic arithmetic of

Heyting.

In 1956, Rogers considered partial recursive functions which could be proved

to be total in a system S, which was permitted to be stronger than Peano

arithmetic. He also considered functions which could be proved in S to be

one-one recursive functions and functions which could be proved in S to be

permutations. These concepts were used in [2] and [3] to obtain several results

concerning the degrees of unsolvability associated with reduction of one set to

another by functions in each of the three classes, i.e., the p-many-one degrees,

the p-one-one-degrees, and the p-isomorphism types.

In 1960, Kent developed a theory of provable permutations and went on to

analyze the algebraic structure of the provable permutations considered as a

group. As did Rogers, Kent allowed the system S to be stronger than Peano

arithmetic. The reader is refered to pp. 61-69 of Kent [1] for additional back-

ground material concerning provable functions.

The approach of this paper will be general both in specification of the system

S and in development of several areas of theory relating to provable functions.

We shall not specify a particular theory S but shall require that it contain properly

a conventional axiomatization of elementary number theory (ENT) such as that

of Kleene [7, p. 82] and enough of the power of axiomatic set theory to enable

formalization of straightforward mathematical argument(3).

Some of the theorems below will contain as part of the hypothesis the statement

that S is sound for ENT, i.e., that there is no formula F which is a theorem of S

and which is false under the standard interpretation of ENT. By the incompleteness

theorem of Gödel, the soundness of S for ENT cannot itself be a theorem of S

since it implies the consistency of S. However, if S is strong enough, the theorems

with soundness as a hypothesis can still be formulated within S and will be theorems

of S as distinguished from theorems about S. Soundness usually is necessary as

an additional hypothesis when one uses in a proof a statement of the form "all

provable functions are recursive functions."

The treatment of the theory will be informal. We adopt here the viewpoint

of Post that the real mathematical content of many results in the theory of recursive

functions is contained in informal proofs of the results, and although such

(3) By elementary number theory we mean here the theory of number-theoretic predicates

expressible in the first-order predicate calculus. Thus, Peano arithmetic (e.g., Zp of Hubert and

Bernays) is an axiomatization of ENT but is not itself ENT.
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results would be meaningless if they could not be translated into some formal

mathematical system, the required translation is a routine, albeit sometimes

lengthy, exercise. We thus employ Church's thesis, which states that any function

which is intuitively effectively calculable is a recursive function.

The author believes that there should exist no serious difficulties in formalizing

this work within Peano arithmetic. Much of the task would merely be adaptation

of results of Kreisel [9]. Many of the results in this paper have been formalized

within Peano arithmetic by David Ballard.

Since one can prove in set theory that Peano arithmetic is sound for £AT,

the occurrences of soundness in the hypotheses of some of the theorems could be

eliminated when S is Peano arithmetic. The theorems, of course, would then no

longer be theorems of S, but would instead be theorems of a more powerful system.

The author is indebted to Hartley Rogers, Jr. for his advice and encouragement

and to the referee for his comments and suggestions.

2. Notation.

2.1. The formal system S.

Propositional connectives: A (and); V (or)' ~ (not); -+ (implies).

Quantifiers: 3 (there exists); V (for all).

Predicate symbols: = (equals); e (belongs to).

Function symbols: + (plus); • (times); s (successor).

Individual constant: 0.

Individual variables : u, v, w, x, y, z, with or without numerical subscripts.

In addition, we use parentheses and brackets (,),[,], and define the relation

< in terms of + and =. We also introduce the symbols 1 for s(0), 2 for s(s(0)),

3 for s(s(s(0))), etc. In general, n will stand for s(s( ••• s(0)•••)), where there are n

applications of the successor function.

The above is a minimal description of S. If S is chosen as a relatively strong

system, more structure would be used than that explicitly mentioned above.

2.2. Informal notation.

Informal variables: u, v, w, x, y, z, with or without numerical subscripts.

Recursive functions (including provable functions and sometimes including

primitive recursive functions): f,g,h,---.

Partial recursive functions: A, 0, O, •••.

Primitive recursive functions: a, ß, y, n, \¡i.

Sets of non-negative integers: A, B, C, •■•.

Complement of a set A: A ( = N — A).

Set-theoretic connectives: U, n, <=, d:, e,$.

Characteristic function of a set A: CA(x), where

CAix) =  [I
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flA]:{f(x)\ xeA}.
f'1ÍA-]:{x\f(x)eA}.
f -*B: "£ is the range of/."

pz[—] : "the least z such that •■•."

= : "ifandonlyif."

\-sA: "A is a theorem of S."

The function symbols and predicate symbols of the formal system will also be

used as informal symbols. There should be no difficulty in determining the intended

use of such symbols as the context will also contain symbols (e.g., variables and

constants) which are distinguishable as formal or informal notations.

2.3. Other notation.

cb0,chy,cb2,---: the partial recursive functions with Gödel numbers 0,1,2,—,

respectively.

W0, Wy, W2, ■■■: the ranges of the partial recursive functions cb0,cby,cf>2,---.

N: the set of all non-negative integers.

0: the empty set.

K:{x\xeWx}.

x, Uy, n2: primitive recursive functions giving a standard effective one-

one correspondence between N x N and N and satisfying the relationships

t(3t«Xz), 3t2(z)) = z; 3i,(t(x,.v)) = x; n2(x(x,y)) = y (cf. functions J, K, L in

Davis [6, p. 45]).

It is possible to formalize the intuitive notion of computational step. In the

Turing formalism (cf. [6]), the number of steps can be just the number of successive

instantaneous descriptions in a terminal computation; in Kleene's system [7],

it can be the number of lines in the shortest deduction of an end equation. Having

chosen an appropriate formalization, let M(e, x, y, n) hold if and only if the

eth partial recursive function applied to input x gives output y in not more than

n steps. A predicate of Peano arithmetic M(e, x, y, n) which numeral-wise expresses

M in S can readily be defined in terms of the T-predicate of Kleene and M can be

shown to be primitive recursive.

3. Definitions.   We proceed to make the following definitions.

Definition 3.1. A partial recursive function fix) will be called a provable

function (p-function) if there is some Gödel number e of f(x) such that \-s P«.(e),

where

Pi(w) = (Vx)(3y)(3n)M(w,x,y,n).

Definition 3.2. A p.r.f./(x) will be called a provably-one-one ip-l-l) p-function

if there is some Gödel number e offix) such that FjP^e) A P2(e), where

P2(w) = ( VXl)( Vx2)( Vy.)( Vy2)[[(3n)M(w,x1,y1,n)

A (3n)M(w,x2,y2,n) A x«. # x2] -► yx # y2].
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Definition 3.3. A p.r.f./(x) will be called a pz-ovae/y-zV/cz-eaí/ng (p-increasing)

p-function if there is some Gödel number e of f(x) such that hsP,(e) A Paie),

where

P3(W) = ( VxO( Vx2)( Vy,)( Vy2)[[(3n)M(w,x1,y1,n)

A (3n)M(w,x2,y2,n)Ax1 < x2] -► yx < y2].

Definition 3.4. A p.r.f./(x) will be called a provably-nondecreasing (p-non-

decreasing) p-function  if there is some Gödel number e of f(x)   such tha

l-sP^AP^e), where

P4(w)«(Vx1)(Vx2)(Vy1)(Vy2)[£(3n)M(w,x1,y1,n)

A(3n)M(w,x2,y2,n) Axt ^ x2] -+ yx gy2].

Definition 3.5. A p.r.f./(x) will be called a provably-onto (p-onto) p-function

if there is a Gödel number e of f(x) such that r-sPi(e) A Ps(e), where

P5(w) = ( Vy) (3x) (3n) M (w, x, y, n).

Definition 3.6. A p.r.f. f(x) will be called a provably-infinite (p-infinite)

p-function if there is a Gödel number e of f(x) such that H^ie) A Pe(e)> where

P6(w) = ( Vx)(3y)(3z)(3n) [(y > x A M(w,z, y, n)J.

Definition 3.7. A p. r. f.f(x) will be called a pro vablepermutation (p-permutation)

if there is a Gödel number e of/(x) such that r-sPx(e) A P2(e) A Ps(e).

Clearly, by Church's thesis, the set T, of Gödel numbers (of partial recursive

functions) satisfying the requirement of Definition 3.1 is a recursively enumerable

set since the theorems of S can be effectively enumerated. Thus there are primitive

recursive functions which enumerate this set (with repetitions allowed) and we will

choose one of these and denote it by *F(x). (This gives an effective listing of the

provable functions: $4.(0), c6.p(1), c/>4>(2), •••.)

In a similar manner we can define sets T2 through T7 to be sets of Gödel numbers

satisfying Definitions 3.2 through 3.7, respectively, and can choose primitive

recursive functions *F2(x) through ^(x), respectively, to enumerate these sets.

Thus, we have the following primitive recursive enumerating functions:

*P2(x): for provably-one-one provable functions.

*P3(x): for provably-increasing provable functions.

*F4(x) : for provably-nondecreasing provable functions.

*P5(x): for provably-onto provable functions.

*P6(x): for provably-infinite provable functions.

^(x): for provable permutations.

4. Elementary properties of provable functions. In this section we state some

elementary properties of p-functions, the proofs of which are mostly trivial in
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S and, in the event S is Peano arithmetic, consequences of results of Kreisel

[9, Vol. 17, pp. 43-49].

Property 4.1. // /.(x), /2(x), — ,/..(x) are p-functions and gix) is primitive

recursive infy,f2,---,fk, then gix) is a p-function.

Property 4.2. If fix) and gix) are both p-functions, then their composition

h(x) = figix)) is a p-function.

Property 4.3. If gix, y) and hiz) are p-functions, e is a Gödel number for h

and if
U Vx)(3y)[y > x A (3n)M(e,y,l,n)]

then if fix) is defined as follows:

/(0)= pz[n(z)=l],

f(x)   = pz\z> g(x,f(x- 1)) A h(z) = 1],

thenf(x) is a p-function.

Property 4.4. Iff(x) is a p-permutation (p-onto p-function, p-1-1 p-function,

then the function fix) defined by:

/'(x) = pz[/(z) = x]

is a p-permutation (p-1-1 p-function, p-1-1 p-onto p.r./.)(4).

Thus the p-permutations form a group (cf. [1], [3 ]).

Property 4.5. If fix) is a p-increasing p-function, then fix) is a p-1-1

p-function; if fix) is a p-1-1 p-function, then fix) is a p-infinite p-function.

5. Properties of provable functions. Before investigating some of the relationships

among the properties of functions contained in Definitions 3.1-3.7, it will be

shown that for each of the definitions in §3, there are recursive functions satisfying

the antecedent of the definition but not satisfying the provability requirement.

The proofs all proceed via diagonal methods.

Theorem 5.1. // S is sound for ENT, then there is a recursive function fix)

which is not a p-function.

Proof. Let/(x) = <¡>V(x)ix) + 1. If S is sound, then clearly, from Definition 3.1,

all members of T. are Gödel numbers of recursive functions. Thus,/(x) is totally

defined and is a recursive function. However, if/(x) were a p-function, then there

would exist some number n such that/(x) = cbV{„}ix). But then

fin) = (^(n) = ^(n)(n) + 1,

a contradiction.

(•») cj>. is a p-1-1 p-onto p.r.f. if hsP2(e) A Ps(e).
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The above proof yields an "incompleteness theorem" for p-functions, since

if we could prove in S that c6V(x)(x) is defined for all x, then we could prove, using

the defining equations for/, that/(x) is totally defined. But then/(x) could be

shown to be a p-function, which is impossible from above. Thus we have:

Corollary 5.2. If S is sound for EN T, then the formula

(Vx)(3y)(3n)MCF(x),x,y,n)

is not a theorem of S.

The incompleteness is actually co-incompleteness since for each x:

r-s(3y)(3n)M(»P(x),x,y,n).

Theorem 5.1 and parts (i) and (vi) of Theorem 5.4 below were proved by Rogers

[3, p. 92] in a different manner in 1956. It is observed there that the class of all

recursive functions is not recursively enumerable in the following sense :

Definition 5.3. A class 'tí of partial recursive functions is called a recursively

enumerable class if there is a recursively enumerable set A such that

4>e^ = (3x)[(j) = (j)xAxeA].

Since the p-functions are a recursively enumerable class (where the set A is the

range of *P(x)), and since (by soundness of S) all p-functions are recursive functions,

there must exist at least one recursive function which is not a p-function. Similar

arguments apply to p-1-1 functions and to p-permutations.

Theorem 5.4. If S is sound for ENT, then:

(i)    There is a one-one recursive function f2(x) which is not a p-1-1 p-function.

(ii) There is an increasing recursive function /3(x) which is not a p-increasing

p-function.
(iii) There is a nondecreasing recursive function /4(x) which is not a p-non-

decreasing p-function.

(iv) There is a' recursive function f5(x) such that fs -* A, which is not a p-onto

p-function.
(v) There is a recursive function f6(x) with infinite range which is not a

p-infinite p-function.

(vi)  There is a recursive permutation/7(x) which is not a p-permutation.

Proof.   For k = 2,3,4, we define fk(x) as follows:

A(0)    =   PZ [Z5i^o)(0)],

fk(x) = pz[z¥= (¡>VkM(x) A z >f(x - 1)].

The soundness of S implies that 4>VkM is totally defined for all x. This fact plus

an analysis of the informal defining equations for fk shows that fk is recursive
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and strictly increasing. However, fk cannot be the appropriate kind of p-function,

else for some number n we would havefk(x) = cbVk(n)(x), which would lead to a

contradiction as in Theorem 5.1.

For k\= 5,6,7, we define/,, as follows:

A(0)  = pz\z^ cbvk(0)ixj],

fk(x)  = pz [z is different from/t(0),/t(l), ■ • ■ ,fk(x - 1) ;

and if x is even, z # <b<vk{x!i)(xf\-

An argument paralleling that above shows that/,, is a one-one recursive function

Also, every ne N appears in the range offk and, in fact, we will have n =fk(m)

for some mz^fln since the smallest number not already in the range of fk is included

each time fk is applied to an even number. Since fk is one-one and onto, it is a

recursive permutation, but/,, differs from each cbWk(x) in at least one point.

Theorem 5.4 could have been proved by using 'P(x) in each of the above con-

structions since Definitions 3.2-3.7 all contain as a requirement that the function

under consideration be a p-function. Since the diagonalizations with *P(x) would

yield functions which had the desired properties but which were not p-functions,

the functions in question could not then be p-1-1 p-functions, p-onto p-functions,

etc. This raises the question : Is the possibility of proving that a partial recursive

function is total independent of the possibility of proving, say, that the same

p.r.f. is one-one, or do relations exist between the two possibilities? Also, what

happens if proofs of "ontoness" and "functionhood" are given for different

Gödel numbers of the same p.r.f.? These questions will be discussed in the remainder

of this section and in §6.

The first question we deal with is whether there are p-functions which are

one-one but not p-1-1 p-functions, p-functions which are onto but not p-onto

p-functions, etc. This question is answered below by Theorems 5.5 and 5.6.

Theorem 5.5. Let fix) be a p-function.

(i)   Iff is one-one, then fis a p-1-1 p-function.

(ii)   /// is increasing, then f is a p-increasing p-function.

(iii) If fis nondecr easing, then fis a p-nondecr easing p-function.

Proof. Let e be a Gödel number of/(x) such that r-sP,(e).

(i)   We define a function g(x) as follows :

g(0) = cbe(0),

tcbe(x), if cbe(x) is different from g(0), g(l), ■•■, g(x - 1);
g(x) =

\iiz[z is different from g(0), g(l), ---,g(x - 1)], otherwise.

The Gödel number e' for g(x) depends effectively upon the Gödel number e

used for computing /(x). From the form of the instructions for. g it is clear that,
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since r-jP^e), Pi(e') can be derived in S via elementary quantificational methods.

Also, the instructions for g(x) force it to be one-one and this fact is easily provable

in S. Therefore, we have r-sPx(e') A P2(e'), and g(x) is a p-1-1 p-function. Now,

we observe that if/(x) is one-one that the second clause in the definition of g(x)

will never operate and g will be the same function as/. But then e' will be a Gödel

number of/and/(x) will be a p-1-1 p-function.

(ii)  We define g(x) as follows :

g(0)=      4>e(0),

,   <£e(x) if 4>e(x) > g(x -  1),
g(x) =

g(x — 1) + 1      otherwise

The argument proceeds as before,

(iii) We define g(x) as follows :

g(0)=       4>e(0),

, 4>ÁX) if<p,(x)^íf(x-l)>
g(*

f <Pe(x)
ix) =

Igix-gix — 1)       otherwise.

Again the argument proceeds as in (i).

Thus a p-function cannot be one-one without being a p-1-1 function, similarly

for increasing and nondecreasing p-functions.

Theorem 5.6. If S is sound for ENT, then:

(i) There is a p-function which is a recursive permutation iand thus a p-1-1

p-fünction, by Theorem 5.5) but not a p-permutation.

(ii)   There is a p-function with range N which is not a p-onto p-function.

(iii) There is a p-function which has infinite range but which is not a p-infinite

p-function.

Proof, (i) This result is originally due to Kreisel [11]. A direct proof appears

in Kent [1, pp. 73-76]. We will assume, for the moment, that we can construct an

infinite recursive set B, the characteristic function CB of which is a p-function,

such that B cannot be proved to be infinite within S. (See definitions 8.1 and 8.2.)

This assumption will be proved as Corollary 8.8. We define fix) as follows :

' x + 1   if CB(x) = 0,

fix) = ■ pz\z is  different  from /(O), fil), ---,/(x — 1)],

ifCB(x)#0.

From the definition of/(x)wecan see that, if the members of B, in increasing

order, are b0,bx,b2, •••, then/has the following cycle structure:
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f =(0,1,2, -,b0)(b0   +   l,b0   +2,-,by)-(bk   +   l,bk+2,-,bk+y)-.

From the definition off(x) and the fact that C6(x) is a p-function it is clear that

/is a p-1-1 p-function. Furthermore, it is easy to show in S that £ is an infinite set

if and only iff is a permutation. Since £ is infinite we know that / is a permutation.

However, if/werea p-permutation, then £ would be p-infinite,;contradicting

the assumed construction.

(ii) The p-function / above clearly has range N. If e is a Gödel number of/,

then from (i) we have hsP,(e) AP2(e) but not hsP,(e) A P2(e) A P5(e). Thus

we have not r-sP5(e) and/is not p-onto.

(iii) Let

f 0    if CB(x) = 0,

fix) = \
i x    if CB(x) # 0.

Clearly/ '(x) is a p-function with infinite range. Furthermore, it is trivial in S that

fix) will have infinite range if and only if B is infinite. Therefore /' cannot

be a p-infinite p-function.

If we modify Definitions 3.2 through 3.7 by deleting the requirement P,(e) from

the expression in each of the definitions, we obtain the notions of a p-1-1 partial

recursive function, a p-increasing p.r.f, a p-nondecreasing p.r.f., a p-onto

p.r.f., a p-infinite p.r.f., and a p-1-1, p-onto p.r.f. We can then note the existence

of primitive recursive functions *P2(x) through *F5(x), respectively, which enu-

merate the above classes of partial recursive functions.

Although a p-1-1 p.r.f. may not be totally defined, it will be one-one over its

domain (if S is sound for ENT). Similar properties hold for the other notions

above.

The following two corollaries show that the results of Theorems 5.5 and 5.6

hold for partial recursive functions as well as for p-functions.

Corollary 5.7.   (i) Ifd(x) is a one-one p.r.f., then 6 is a p-1-1 p.r.f.

(ii)  If 6(x) is an increasing p.r.f., then 6 is a p-increasing p.r.f.

(iii) Ifd(x) is a nondecreasing p.r.f., then 6 is a p-nondecreasing p.r.f.

Proof. We sketch the proof, using the general method of Theorem 5.5. If e is a

Gödel number of 6, we define a p.r.f. A(x) which will diverge whenever 0(x) does.

In addition, if 8(x) converges in such a manner that A(x) would not be one-one

(or increasing, or nondecreasing, as the case may be), A(x) will also diverge at that

particular point. The last part of the instructions for A will permit A to be proved

one-one (or increasing, or nondecreasing) in S. Since 0 actually is one-one, etc.,

we can observe that the instructions for A are merely another way for computing

6 so that 9 is a p-1-1 (or p-increasing, or p-nondecreasing) p.r.f.
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Corollary 5.8. If S is sound for ENT, then:

(i)    There is a p.r.fi which is a one-one onto p.r.f. but not a p-1-1, p-ontop.r.f.

(ii)   There is a p.r.f. with range N which is not a p-onto p.r.f.

(iii) There is a p.r.f. which has infinite range but  which is not a p-infinite

p.r.f.

Proof. The corollary is an immediate consequence of Theorem 5.6.

We can now obtain a slight strengthening of Theorem 5.4.

Theorem 5.9.   // S is sound for ENT, then:

(i) There is a one-one recursive function which is a p-1-1 p.r.f. but not a

p-1-1 p-function.

(ii) There is an increasing recursive function which is a p-increasing p.r.f.

but not a p-increasing p-function.

(iii) There is a nondecreasing recursive function which is a p-nondecreasing

p.r.f. but not a p-nondecr easing p-function.

(iv) There is a recursive function with range N which is a p-onto p.r.f. but not

a p-onto p-function.

(v) There is a recursive function with infinite range which is a p-infinite

p.r.f. but not a p-infinite p-function.

(vi) There is a recursive permutation which is a p-1-1, p-onto p.r.f. but not

a p-permutation.

Proof. Parts (i), (ii) and (iii) follow from Theorem 5.4 and Corollary 5.7.

(iv) Define g(x) as follows :

g(x) =
—-— if x is odd,

- fyvixiifa) + 1  if x is even.

Clearly, g is a recursive function and g is p-onto (also p-infinite). However,

g differs from each p-function so that g cannot be a p-function, much less a p-onto

or a p-infinite p-function.

(v)   Immediate from part (iv).

(vi) The inverse function of/7(x) in Theorem 5.4(vi)is the desired recursive

permutation. By Property 4.4, since /7 is a p-1-1 p-function, its inverse will be a

p-1-1, p-onto p.r.f. The inverse cannot be a p-permutation, however, for then

/7 would be also.

6. Gödel numbers of provable functions. Now that the existence of p-functions

which are onto but which are not p-onto p-functions has been shown, one might

wonder whether the failure of such a function f(x) to be a p-onto p-function

arises from inability to prove that / has N as its range, or merely from inability



1965] THEORY OF PROVABLE RECURSIVE FUNCTIONS 505

to prove "ontoness" for the same Gödel number off(x) for which it is shown that

/is total. In other words, if/(x) has a Gödel number e for which r-sPi(e) and

another Gödel number e', e # e', for which hsP5(e'), must / be a p-onto p-

function? That this question is not trivial is shown by Theorem 6.1 and

Corollary 6.2.

Theorem 6.1. If S is sound for ENT, every p-function f(x) has at least one

Gödel number e' such that not i-sPx(e').

Proof. Given/(x), we define g(x) as follows:

( f(x)    if c/>T(x)(x) converges.

g(x) = \
( diverges otherwise.

We take e' to be the Gödel number of g(x) determined by the above

instructions for computing g(x). Since S is sound, c6>p(x)(x) always converges,

so e' is also a Gödel number for f(x). However, if ^sPi(e')> then clearly

hs( Vx)(3y)(3n)M(vF(x), x,y,n) which contradicts Corollary 5.2.

Corollary 6.2. If S is sound for ENT, then for each p-function f(x) there

exist a pair {e, e'} of Gödel numbers for f such that it cannot be proved in S that

(¡>e and c6e. are the same function, i.e.,

not hs(Vx)[(Vyi)(Vy2)[[(3n)M(e,x,yi,n)A (3n)M(e',x,y2,n)] -y, = y2]

A [(3y)(3n)M(e,x,y,n)~(3y)(3n)M(e',x,y,n)]].

Proof. We take e to be a Gödel number of/(x) such that r-sPx(e) and determine

e' as in Theorem 6.1. Clearly, if the statement above is a theorem of S, then

rs1?x(e'), which contradicts Theorem 6.1.

Theorem    6.3.   If e   and  e'   are   Gödel numbers of the same recursive

function f(x) with range N such that \-sl?i(é) and hsP5(e'), then there is another

Gödel  number e" of f(x), which depends  effectively on e and e', such that

l-sPj(e")AP5(e"). That is to say, f is a p-onto p-function.

Proof. We define a function g(x) by enumerating its ordered pairs <x,g(x)> as

follows.

SiepO: A. g(0) = 0,(0).

B. Find an x0 such that c/v(x0) = 0. Set g(x0) = 0 (i.e., list the ordered pair

<x0,0» unless x0 = 0 and g(x0) has already been defined to be different from 0.

In this case, set g(l) = 0.

Step 1 : A. g(l) = <j>e(l) unless g(l) was defined in Step 0, part B.
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B. Find an xx such that cbe.(xy) = 1. Set g(xy) = 1 unless g(xy) has previously

been defined to be different from 1. In this case, set g(yy) = I, where y> is the

smallest number for which g(x) has not already been defined.

Continuing, we obtain at the nth step:

Step n: A. g(n) = cbe(n) unless g(n) has been already defined at a previous step.

£. Find an x„ such that cbe.(x„) = n. Set g(x„) = n unless g(x„) has previously

been defined to be different from n. In this case, set g(y„) — n, where y„ is the

smallest number for which g(x) has not previously been defined.

The above instructions for computing g(x) yield a Gödel number e" for g, which

depends effectively on e and e'. First we observe that the procedure with Gödel

number e" will not run into trouble at part A of any step since cbe is totally defined,

nor will it diverge at part B of any step since cb,,, has range N. Furthermore, since

Pt(e) and P5(e') are theorems of S, it can be shown in S that, for any n, the pro-

cedure will reach and carry out the instructions of step n. With this fact in hand,

it is easy to show in S that P^e") since if ghasnot been defined for some argument

k by the fcth step, it will be defined in step k, part A. Also, we can deduce P5(e") in S

by formalizing the argument that if a number k has not appeared in the range of g

by the fcth step, k will be defined as the output ofg(x), for some x, in step fc, part £.

Thus we have r-sP,(e") A P5(e"). Now we note that whenever g is defined for an

argument z, either g(z) = cbe(z) or g(z) = cbe.(z) or there must have been conflict

at an earlier step between cbe(z) and cbefz). Since f(x) = cbe(x) = cbp.(x), no con-

flicts will actually occur and g(x) =f(x). Thus e" is another Gödel number for

f(x), and/is a p-onto p-function.

Corollary 6.4. // e and e' are Gödel numbers of the same infinite recursive

function f(x) such that r-sP,(e) and hsP6(e'), then there is another Gödel number

e" of f(x), which depends effectively on e and e', such that r-sPi(e")AP6(e")-

That is to say, fis a p-infinite p-function.

Proof. We modify the proof of Theorem 6.3 by changing part B of each step

so that the nth step will read : "Find an x„ such that cbe.(x„) > n. Set g(xn) = </>e-(x„)

unless g(x„) has previously been defined to be different from cbe .(x„). In this case

set g(y„) = n + 1, where y„ is the smallest number for which g(x) has not previously,

been defined." Again, the process can be guaranteed to reach step n, for any n,

and Pj/e") and P6(e") can both be deduced in S.

Corollary 6.5. Ife and e' are Gödel numbers of the same recursive permutation

f(x) such that r-sP«(e) and hsP5(e') inenl there is another Gödel number e" of

f(x), which depends effectively on e and e', such that

hsP1(e")AP2(e")AP5(e").

That is to say, f is a p-permutation.
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Proof. Given e and e', we use Theorem 6.3 to obtain a Gödel number e* of

f(x) for which r-sP1(e*)APs(e*). Now since / is a recursive permutation, it is

one-one. Therefore the procedure in Theorem 5.5 (i), when applied to c6e,(x) will

yield another Gödel number e" of/(x) for which rsP,(e")AP2(e"). But examina-

tion of the instructions for g(x) in Theorem 5.5 (i) shows that it can easily be

proved in S that the range of f(x) = d>e.(x) is contained in the range of

g(x) — <]>e"(x). Thus, from r-sPs(e*) we obtain hsP5(e"), completing the proof.

7. Proof indices and recursion properties. One may have already observed that

p-functions can be described in three different ways: as sets of ordered pairs,

by the instructions for computing the function (that is, by the Gödel number of

the function), and by the argument to which *P(x) must be applied to give a Gödel

number e of the function for which Px(e). We shall consider the third method

of naming p-functions in this section and in part of §10.

Definition 7.1. Let/(x) be a p-function. Then a number k will be called a

proof number of fix) if *P(/c) is a Gödel number of f(x).

In developing a theory of provable recursive functions analogous to the theory

of recursive functions, one might hope that a proof number of a p-function might

be an analogue of a Gödel number for a partial recursive function. While this

hope is not entirely in vain (cf. Theorem 10.2) at least one very important property

of Gödel numbers of partial recursive functions, namely the fixed-point property

given in the recursion theorem (cf. Kleene [7, p. 3521), fails to carry over to proof

indices of p-functions.

Before proving this negative result, we can obtain a slight strengthening of the

recursion theorem, which will be used in §§10 and 11.

Theorem 7.2. There exists a p-1-1 p-function n(e) such that, for all e,

«Am««) = $«« •

Proof. Define a recursive function g(e) such that <j)g(e) = 4><pAe)- Then the

desired function n(e) is simply gikie)), where k(e) is the Gödel number of the

composition ç6«,(g(x)), using a fixed Gödel number of g. Under a suitable method

of Gödel numbering, there will be no difficulty in assuring that g and k are both

one-one primitive recursive operations on Gödel numbers of partial recursive

functions. Thus, n(e) is a one-one primitive recursive function, therefore a p-1-1

p-function, and we have:

<t>n(e) = <??(*<<>)) = <£«,,(.,(*(<.)) = ^(M«(fc(e))) = <^.(n(e)) •

One might hope that a provable function analogue of Theorem 7.2 might

hold, i.e., that for every recursive mapping gix) of proof numbers of p-functions,

there would be a fixed point n, depending effectively on g, such that c6s.(g(„))=c6«P(„).

Failing this, one might still hope to obtain such a result if g were required to be
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a p-function. However, neither result holds. That the first of the two propositions

is false is easily shown.

Theorem 7.3. // S is sound for ENT, there exists a recursive function gix)

such that, for every x, cbV(gix)) / cbW(xy

Proof. We merely define g as follows

gix) = PZ   [(K(Z)(0) #  t)V(;ri(0)].

The soundness of S plus the fact that all constant functions are p-functions show

that g(x) is the desired recursive function.

The use of soundness of S, as a sufficient condition for Theorem 7.3 and for

Theorem 7.4 below to hold, is clear. Furthermore, consistency of S is a necessary

condition for the two theorems to hold. For if S is inconsistent, all Gödel numbers

e of partial recursive functions have proofs in S of P.(e). Thus, W -* N and *F is a

recursive permutation. Then, given a recursive function /, we can apply the re-

cursion theorem to the recursive function h(x) = y¥(f(W~i(x))) and obtain

an n such that cbV(fxv-, (n))) = <p„. Then if we let y = \Y~ '(n), we have W(y) = n,

and

^n/t»)= (l)'Vifiyv'Hf<.y)m = ^(z (*-'(")» = ^i> — <Kw

Thus, Theorems 7.3 and 7.4 do not hold if S is inconsistent.

We now obtain the stronger negative result :

Theorem 7.4. If S is sound for ENT, there exists a p-function f(x) such that

for every x, tpT(/(x)) # cbnx)(5).

Proof. First we define a recursive function g which operates on the instructions

for computing cpv,x) in such a manner that for all x and all y :

4>g<x)(y) = <l>nx)(y) + *•

By soundness of S, cbV(x) is defined for all y so we have, for all x, cbg,xX =£ <P*r(Xy

Now, if we can find a p-function/such that, for all x, W(fix)) = #(x), then we are

done since we will have, for all x,

The construction and justification of/takes place in five steps below; /is actually

primitive recursive.

(5) The referee has pointed out that the method of proof used for this theorem is not valid

when •? is an arbitrary primitive recursive enumeration of the p-functions. Thus, "P should be

chosen so that there exist primitive recursive functions a and v with the properties mentioned

in the proof. Such an enumeration of the p-functions can be produced using the standard

techniques of arithmetization of S.
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(1) We consider a suitable Gödelization of all finite sequences of characters

using the alphabet of S, arranged according to the number of characters in each

sequence. Clearly, one can effectively establish a one-one correspondence between

such sequences of characters and A by listing all 1-character sequences, then all

2-character sequences, then all 3-character sequences, and so on, in such a manner

that, given a number n, one can find effectively the sequence corresponding to n.

Furthermore, given a sequence, one can effectively find its Gödel number, and if

two sequences are of different length, the longer sequence will have the greater

Gödel number. Now we assert the existence of a primitive recursive predicate

Q(x) such that Qix) is true if and only if the sequence with Gödel number x is

a list of well-formed formulas of S which constitutes a proof in S of an

expression of the form Pi(e), for some e. The actual primitive recursion

equations for Q are somewhat tedious to construct but are straightforward in

nature.

Given an x for which Qix), we can effectively "pad" the proof associated with

x by adjoining the identity "0 = 0" in front of the proof. This yields a sequence

of characters of S of greater length, which is, however, stilla proof in S ofthe same

expression as before. Because ofthe effectiveness ofthe Gödel numbering and the

uniform manner in which a proof is modified, there is a primitive recursive function

p(x), which gives the Gödel number of the expression resulting when "0 = 0"

is concatenated on the left ofthe sequence with Gödel number x. From the above

discussion we see that for all x, p(x) > x and if Qix), then g(p(x)).

(2) We can now define a primitive recursive function w(x) which enumerates

in strictly increasing order the Gödel numbers x for which Qix). Let:

n(0) =  a, where a = pz [Q(z)~],

(pz [n(x - 1) < z ^ p(n(x — 1)) A 6(z)]        if such a z exists,

n(x) = \
(0      otherwise.

Since p(n(x — 1)) is a Gödel number greater than r\(x — 1) for which Q holds,

there will always be a z, w(x — 1) < z _^ p(n(x — 1)), such that Q(z). Thus, every

number in the range of n will be the Gödel number of a proof in S of Pi(e), for

some e, and conversely. Clearly, we also have for all x, x ^ n(x) since n is an

increasing function.

(3) There is a primitive recursive function a(y) such that, whenever y is the

Gödel number of a proof in S of Pi(e), a(y) = e. This function merely extracts the

expression for the numeral e from the last line of the proof associated with y. We

now have the relationship xP(x) = a(n(x)). (This equation can be made the defi-

nition for *P.)

(4) If we now reconsider the function g(x), we can see that given a proof in S

of Px(%¥(x)), we can uniformly convert it to a proof of Px(g(x)). This can be done
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so as to give rise to a primitive recursive function ß(y) with the property that

whenever y is the Gödel number of a proof in S of P^l^x)), ß(y) is the Gödel

number of a proof in S of Pi(g(x)). From this we have a(ß(n(x))) = g(x).

(5) Finally, we define the desired function/(x) as follows:

c uz [z g ß(n(x)) A n(z) = J5(n(x))]       if such a z exists,

fix) = \
( 0      otherwise.

Then/will be primitive recursive because ß and n are. Since, from (4), Q(ß(n(x)))

holds, we know that ß(n(x)) = n(z) _î z, for some z. Therefore, the first clause

of the definition of / will always be satisfied and we have, for each x,

n(f(x)) = ß(n(x)). Applying a to both sides we obtain :

*(/(*)) = «inifix))) = ot(ß(n(x))) = gix).

This completes the proof.

8. Provably recursive sets. In this section we study properties of a provable

analogue of the notion of a recursive set.

Definition 8.1. A set B (of non-negative integers) will be called provably

recursive (p-recursive) if the characteristic function CB of B is a p-function.

Definition 8.2. A p-recursive set B will be called provably infinite (p-infinite)

if there is a Gödel number e of the characteristic function CB of B such that

r s(Vx) (3y) (3n) [y > x A M(e,y, 1, n)] A P»(e) (6).

Clearly the sets of Gödel numbers of characteristic functions of p-recursive sets

and of p-infinite p-recursive sets are recursively enumerable.

Theorems 8.3 and 8.4 appear in Rogers [3]. We give a different proof for

Theorem 8.4.

Theorem 8.3. (i) If a set B is finite or co-finite, then B is p-recursiveL1).

(ii) If A and B are p-recursive sets, then A U B, A n B, A — B, and A are

p-recursive sets.

The proof is trivial.

Theorem 8.4. If S is sound for ENT, then there exists a recursive set B which

is not p-recursive.

(6) The method of Corollary 6.4 can be used to show that the expression Pi(e) may be

dropped from the formal statement without weakening the definition. The class of p-recursive

sets is also unchanged if the definition ismodifiedtorequirealso that Cb be provably a charac-

teristic function (cf. Theorem 5.5).

C7) A set B is said to be co-Z foi some property Z if B has property Z.
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Proof. We use a simple diagonalization. Let £ be the set such that

if <Nu)(*) = °>

' <l>nx)(x) # 0.

(1       if<

c^ = io     if,

By soundness of S, B is a recursive set, but its characteristic function cannot be

a p-function.

Theorem 8.5. A set B is a p-infinite p-recursive set if and only if B is the

range of a p-increasing p-function.

Proof. Suppose B is p-infinite p-recursive. Define/(x) as follows:

/(0) = pz [CB(z) = 1],

fix) = pz [z >f(x - 1) A CB(z) = 1].

Since CB is given as a p-function,/will be a p-increasing p-function by Property

4.3 and Theorem 5.5 (ii). It is clear that/-» £.

Now suppose £ is the range of a p-increasing p-function g(x). We can define

a characteristic function of £ as follows :

rl       if(3y)[y = xAs0>) = x],
CB(x) -

It is easy to verify that the definition of CB does, in fact, yield a characteristic

function of B. Since g is a p-function, CB will be a p-function and £ will be

p-recursive. Furthermore, by Property 4.5, g is a p-infinite p-function and it also

can easily be shown in S that, for all x, g(x) ¿z x. From this it follows that one can

show in S that for each x in the range of g, CB(x) = 1, so that B is p-infinite p-

recursive.

Theorem 8.6. (i) If B is a nonempty recursive set, then B is the range of a

p-nondecreasing p-function.

(ii) If S is sound for ENT and B is the range of a p-nondecreasing p-function,

then B is a nonempty recursive set.

Proof, (i) Suppose that B is nonempty and recursive. Let e be a Gödel number

of the characteristic function of B. We define an auxiliary function g(x) as follows :

g(0) = x(b,b + 1), where b = pz\ze£],

' <n2(jg(x)), 7t2(g(x)) + 1) if M(e, n2(g(x)), 1, x + 1),

g(x + 1) = - T(3t.(g(x)),3t2(g(x)) + 1) if M(e,3t2(g(x)),0,x + 1),

. gix) (i.e., T(3i,.(g(x)), 3t2(g(x)))   otherwise.
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Then we define /(x) = nx(g(x)). To see that / is the desired function we must

analyze the operation of g. Essentially, g(x) represents the process of taking

steps in the computation of CB(b + 1) until an output is obtained, then CB(b + 2),

then CB(b + 3), etc. Those arguments for which CB(x) = 1 are identified as mem-

bers of B. If we regard g as a mapping from A x A into N x N, the left member

of the ordered pair of the argument for g represents the latest number found by

the process to be in B and the right member represents the argument to which

CB is currently being applied. From this, one can verify that/-* B and/is non-

decreasing. Since/is clearly a p-function, by Theorem 5.5 (iii)/is a p-nondecreasing

p-function.

(ii) By soundness of S, B is the range of a nondecreasing recursive function

and B is consequently a recursive set.

Theorem 8.5 is the direct analogue of the fact that a set is infinite and recursive

if and only if it is the range of an increasing recursive function. A natural analogue

of the fact that a nonempty set is recursive if and only if it is the range of a non-

decreasing recursive function would be a statement that a nonempty set would

be p-recursive if and only if it were the range of a p-nondecreasing p-function.

This statement is false since, by Theorem 8.6, a set would be recursive if and only

if it were p-recursive, which contradicts Theorem 8.4.

We now fill in the lacuna left in the proof of Theorem 5.6. The following theorem

was suggested by a closely-related result of Kent [12], and gives one of the basic

incompleteness results for the theory of p-functions and p-recursive sets. The

proof is based on a modification of the method Kreisel used in [11].

Theorem 8.7. If S is sound for ENT, then there isa p-recursive set A such that:

(i)  A is infinite and co-infinite.

(ii) A is neither p-infinite nor co-p-infinite.

Proof. First we introduce the primitive recursive predicate:

C(x,m,n) = [n < x A (3z) [z < x A'M(fP(m), n,z,x- 1)]].

One can see that C(x, m, n) will be true if and only if x is a proper upper bound

for the following three numbers: n; the number of steps it takes for the computation

of <p4.(m)(n) to give an output ; the ouput of the computation of 4>V(m)(n).

Now we construct the following strictly increasing sequence :

x0 = pzC(z, 0,0),

xx  = pzC(z,0,x0),

x2 = pzC(z,l,xx),

x3 = pzC(z, l,x2),

x2k = l¿zC(z,k,x2k_x),

x2k+i = uzC(z,k,x2k).
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We next define a predicate Q'x) so that :

ß(x) = (3i) [*-*,].

It is not immediately clear that Q(x) is primitive recursive, but a set of primitive

recursion equations can be written without difficulty. Given x, one merely imitates

the construction of the above sequence until he encounters an application of C

to <x, m0, n0> for some m0 and n0. Then g(x) = .C(x, m0, n0). Furthermore,

to arrive at this point the predicate C need only be used x +1 times since the

procedure for constructing the sequence can be carried out so that the leftmost

argument of C increases by 1 at each step.

Now we define the characteristic function CA of A as follows:

CAO)" 1,

C.(x)=i1-C^-1)ifßW'

1 CAx -i)      if ~ S(x).

Since Q is primitive recursive, so is CA. Thus A is a p-recursive set. Examination

of the defining equations for CA shows that the sequence of values of CA(x) is as

follows :

X.     U,     1,     —,        Xq>        —, Xy,       —,       X2,      .".,

Ill X X
CA(x):  1,   1,   -,1,0,0,  -,0,   1, 1, ... 1,0,0,-.

From this one can see that if the sequence x0, xlt x2, — is infinite, then both A

and À will be infinite since for each x¡ with odd subscript there is at least one

member of A and for each x¡ with even subscript there is at least one member of Ä.

Now suppose the last element of the sequence were x, for some t. Then, for the

appropriate fc such that t = 2k or t = 2fc + 1, we would have ~ C(z, k,x,) for

all z > xt. But, by soundness of S, cbV(x)(x,) will eventually converge, say in y0

steps, giving output yt. Then, if we take z = max {y0, yu xj + 1, we have

C(z, fc, x(), contradicting the above. Thus there are an infinite number of x¡'s, and

A and À are both infinite.

Now suppose A were p-infinite. Then, by Property 4.3 and Definition 8.2,

the function n(x) defined by:

/i(x) = pz[z>xACx(z) = l]

would be a p-function. Let fc be a proof number of n(x). We can see that

hix2k) = x2*+i from the defining equations for n, i.e., that cbvwix2k) = x2k+1.

However, x2k+1 is defined in the sequence as pzCiz,k,x2k) and one of the

requirements for Ciz, fc, x2k) to be true is that z > 4>VXk>(x2k). But then

*2*+i > <t>v(k)(x2k) - *2*+i > which is impossible.
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The proof that A is not p-infinite is symmetric with the above. We merely

define:

n'(x) = pz[z>xAC/1(z) = 0]

and proceed to consider h'(x2k. + x), where k' is a proof number for n'(x). This

completes the proof of the theorem.

Corollary 8.8. If S is sound for ENT, then there isa p-recursive set B which

is infinite, co-infinite, p-infinite, but not co-p-infinite.

Proof. We define B = {y|y = 2xAxe A}, where A is the set in Theorem 8.7.

Clearly, B and B are both infinite. B is p-infinite because it contains all of the odd

positive integers(8). B is not p-infinite because it is trivial in S that B is p-infinite

if and only if A is p-infinite.

The set B is clearly a p-recursive set which is infinite, co-infinite and p-infinite,

but does not have a p-infinite complement. Further, we remark that the set of all

even non-negative integers is an infinite co-infinite p-recursive set which is p-

infinite and has a p-infinite complement. Thus there are infinite co-infinite p-

recursive sets exhibiting each of the four possible combinations of provability

and nonprovability with respect to the infinite cardinality of the sets and their

complements.

9. Recursively enumerable sets. The provable analogue of a recursively enumer-

able set, i.e., the range of a partial recursive function, would be a set which is

the range of a p-function. One could call such a set provably enumerable, but

in view of the following theorem, the additional terminology is unnecessary.

Theorem 9.1. If B ^ 0 , then B is the range of a p-function if and only if B

is recursively enumerable^).

Proof. The result is immediate from the well-known theorem of Kleene that a

nonempty set is the range of a primitive recursive function if and only if it is

recursively enumerable.

Although one can, given x, y, and n, tell effectively (assuming soundness of S)

whether the p-function with proof number n applied to x gives output y (i.e.,

whether c6T(n)(x) = y), one still cannot tell effectively whether, given x and n, x is in

the range of <j>V(„). This follows immediately from the fact that the recursively

enumerable, nonrecursive set K is the range of some p-function/(x), by Theorem

(8) We use the following lemma, the proof of which is immediate: If A and B are p-recursive

sets such that A can be proved to be contained in B ,then if A is p-infinite, B is p-infinite.

(9) In fact, if B # 0, given a Gödel number of B, one can effectively find a Gödel number

of the desired p-function and also a number k suchthat cóvc*)-!- B. (See the proof of Theorem

10.2).



1965] THEORY OF PROVABLE RECURSIVE FUNCTIONS 515

9.1. A decision procedure for the range of/(x) would yield a decision procedure

for K, which is impossible.

We know that if A is an infinite recursively enumerable set, then A is the range

of a one-one recursive function. Theorem 9.1 shows that A is the range of a

p-function. However, both properties need not hold simultaneously, i.e., such a set

A is not necessarily the range of a one-one p-function, (which, by Theorem 5.5 (i),

would be a p-1-1 p-function). This result follows from the next theorem, which

is due to Rogers.

Theorem 9.2. If S is sound for ENT, there is an infinite recursively enumerable

set A which is not the range of any p-1-1 p-function.

Proof. We set up two lists, List A and List B. First the range of cby2(0) is

enumerated until two different numbers have appeared. The first is put into

List A and the second into List B. Then the range of cbV2ÍX) is enumerated until

two different numbers not occurring in List A or List B have appeared. Again, the

first is put into List A and the second into List B. Continuing, at the fcth step,

the range of cpVlW is enumerated until two new numbers not already occurring in

List A or List B have appeared. This must eventually happen since, by soundness

of S, cbV2ik)is a one-one recursive function. The first is put into List A and the second

into List B. Finally, A is defined as the set of all numbers which eventually get

onto List A.

By Church's thesis, A is recursively enumerable. However, each p-1-1 p-function

has contributed an element to List £, which is contained in Ä, so that A cannot

be the range of any p-1-1 p-function.

Definition 9.3. A recursively enumerable set B will be called provably infinite

if £ is the range of a p-infinite p-function.

We show next that a p-infinite recursively enumerable set is a reasonable prov-

able analogue of an infinite recursively enumerable set.

Theorem 9.4. A set B is p-infinite and recursively enumerable if and only ifB

is the range of a p-1-1 p-function.

Proof. The converse part of the theorem follows immediately from Property

4.5. Now suppose £ is the range of a p-infinite p-function/(x). We simply define

a function g(x) as follows:

g(0) = /(0),

gix) = fiy), where y = pz [/(z) is different from g(0), gil), —, g(x - 1)].

Since / is a p-infinite p-function, it can be shown in S that ( Vx)(3z)[/(z) is

different from g(0), g(l),---,g(x - 1)]. Then by Properties 4.1 and 4.3, g is a

p-function. It is obvious that g is one-one and therefore a p-1-1 p-function. It is

also clear that g -» B.
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Corollary 9.5. // S is sound for ENT, then there is an infinite recursively

enumerable set which is not p-infinite.

Proof. The set A in Theorem 9.2 is infinite and recursively enumerable but

not the range of any p-1-1 p-function. By Theorem 9.4 A cannot be p-infinite.

Theorem 9.6. If B is a p-infinite recursively enumerable set, then B contains

a p-infinite p-recursive subset A.

Proof.    Let f(x) be a p-infinite p-function such that / -* B. We will define

a p-increasing p-function g(x) such that the range of g is contained in B.  By

Theorem 8.5, if we define A as the range of g, then A will be p-infinite p-recursive.

Let:

¿KO) = /(O),

g(x) = fiy), where y = pz{/(z) > g(x - 1)].

Since/is a p-infinite p-function, g will be an increasing (therefore p-increasing)

p-function  by Property 4.3. Clearly, the  range  of g is contained in  B(10).

10. Provably productive and provably creative sets. The following definition

is due to Rogers :

Definition 10.1. A set B will be called provably productive(p-productive)

if B is productive with a productive function which is a p-function.

An alternative definition, which might appear to be a better analogue of the

definition of a productive set, would replace Gödel numbers by proof numbers

as follows :

Definition 10.1A. A set B will be called provably productive if there is a

p-function/(m) such that, for all m, whenever WV(m) <= B,f(m)eB — Wv,m).

Theorem 10.2. A set B satisfies Definition 10.1 if and only if B satisfies Defi-

nition 10.1 A.

Proof. Assume B is productive with a productive p-function g. Then if we

define/(/n) = gCP(m)),/satisfies Definition 10.1A.

Now assume/(m) satisfies Definition 10.1 A. First, using the primitive re-

cursive functions 7ti(x), 7t|(x), and 7t|(x), which give an effective one-one corre-

spondence between A and N3 via

x<-> < 7ti(x), 7t2(x), 7t|(x)>,

we define, for each m,

(10) The statement that Ac B is also a theorem of S.
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c n\(x)      if M (m, n\(x), n\(x), n\(x)),

Kix) = \
( b otherwise,

where b is some fixed member of B.

For each m, the function km is obviously a p-function. Furthermore, the Gödel

number of fcm depends effectively on m. Thus, there is a recursive function ./(m)

such that, for all m, cbJ(m} = km . Examination of the definition of km shows that

fcm has as range all of the outputs of (/>„„ and b,so that km->Wm U {b}. Thus, for

all m, Wj(m) = WmU {b}.

Now we assert the existence of a primitive recursive function y(m) such that,

given m, y(m) is the Gödel number cf a proof in S of P«(j(m)). This can be done

because proofs in S that km is total can be given in a uniform manner. Using the

primitive recursive functions a(y) and n(x) of the proof of Theorem 7.4, we note

that a(y(m)) = j(m), for all m, and we define a primitive recursive function gim)

as follows :

r pz\z z% yim) A n(z) = y(m)]   if such a z exists,
g(m) = i

( 0   otherwise.

Arguing as in the proof of Theorem 7.4, we have, for all m,

V(g(m)) = «Ol(g(.m))) = a(y(m)) = j(m).

Consider the p-function ñ(m) =f(g(m)). For all m, if lFm<=£, then Wj(m)cz B,

and we have:

Hm) =f(g(m))eB - W^(m)) = £ - WKm} <z:B-Wm.

Thus n is a productive p-function for £.

Definition 10.3. A set C will be called provably creative (p-creati\e) if C is

recursively enumerable and C is p-productive.

We remark that the set K = {x\xe Wx} is p-creative since its productive

function is the identity function. However, Rogers has shown that not all creative

sets are p-creative (assuming soundness of S); therefore, not all productive sets

are p-productive [3, p. 107].

The remaining results in this section are direct analogues of known facts

about productive and creative sets. In each case, the proof follows the "classical"

construction and observes that the appropriate functions are, in fact, p-functions.

For this reason, although constructions will be given, some of the justifications

will be abbreviated. References will be found in [3], [4], [5], and [8].

Theorem 10.4. Every p-productive set has a p-increasing productive p-func-

tion.
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Proof. Let B be p-productive with productive p-function / First we define

a primitive recursive function h(x) such that, for all x, Wh(x) = Wx\j{f(x)}.

Then we construct gix) as follows :

g(0) = /(0),

'f(hk(x)), where k = pz [z S g(x - 1) + 1 Af(h\x)) > g(x - 1)]

g(x) = " if such a z exists,

- g(x — 1) + 1     otherwise.

Clearly, g is increasing and if Wx c B, then f(x),f(h(x)),f (h(h(x))),f(h3(x)), ■■■

will all be different members of B — Wx. Thus for some k, 0 _ k ^ g(x — 1) + 1,

f(hk(x)) must be greater than g(x — 1) and g(x) will be in B — Wx. On the other

hand, if Wx d: B, g(x) will still be defined, possibly by the second clause in the

expression. Since/and h are p-functions,the process defining g(x) can be proved

in S to terminate for all x, so that g will be a p-function. By Theorem 5.5, g will

be a p-increasing p-function.

Corollary 10.5. Every p-productive set has a p-1-1 productive p-function.

Theorem 10.6. If a set B is p-productive, then B contains a p-infinite recursively

enumerable subset A.

Proof. The set of all Gödel numbers of the empty set (i.e., {x | Wx = 0}) is not

recursively enumerable, but it contains a p-infinite recursively enumerable subset D.

Let g be a p-infinite p-function with range D and let/ be a p-1-1 productive p-

function of B. Then n(x) = f(g(x)) is a p-infinite p-function, and its range A is

contained in B.

Theorem 10.7. Every p-1-1 p-function f(x) is a productive p-function for

some p-creative set.

Proof. Let C = {f(x)\f(x)eWx}. If Wx c C, then f(x)iWx. But then

f(x)eC— Wx, and C is p-creative with/as a productive p-function.

Definition 10.8. A set B will be called completely p-productive if there is

a p-function/(x) such that for all x, f(x)e(B - Wx) u (Wx - B).

Theorem 10.9. A set is completely p-productive if and only if it is p-productive.

Proof. The direct part of the theorem is trivial. Now suppose that B is a p-

productive set with productive p-function f(x). We can define for each x, a re-

cursive function gx(y) such that, for all n, WgM = Wx n {/(//)}. The Gödel

number of gx, as x varies, is given by a p-function e(x). Now by Theorem 7.2

there is a p-function n such that, for all x, Wg (,,(eW)) = Wn{eM). Now we define
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n(x) = f(n(e(x))). Then n is the desired completely productive p-function for if

h(x)eWx, then Wn(e(x)) = {h(x)} and n(x)¿£; if h(x)^Wx, then Wn{e(x)\ = 0

and h(x)eB.

Theorem 10.10. If £ is a p-infinite recursively enumerable set, then B can

be decomposed into a p-creative set C and a p-productive set P (i.e., C KJ P = B,

CnP = 0).

Proof. By Theorem 9.4 there is a p-1-1 p-function/such that/->•£. Then define

C =/[K], P =/[•£]• C is recursively enumerable and both C and P are p-

productive with productive p-function h(x) = f(gix)), where g is a p-function

such that, for all x, Wglx) =/_1[IFx].

Corollary 10.11. Every p-productive set B can be decomposed into a p-pro-

ductive set P and a p-creative set C.

Proof. Let A be a p-infinite recursively enumerable subset of £ (Theorem 10.6).

We decompose A into a p-creative set C and a set P'as in Theorem 10.10. Now if

P = B — C, then P is p-productive with productive p-function n(x) = /(g(x)),

where/ is the productive p-function for B and g is a p-function such that, for all

x, Wg(x) = Wx U C.

Theorem 10.12. //£ is p-productive and A is recursively enumerable, then:

(i)  If A <zz B, then B — A is p-productive.

(ii) If B <zz A, then B U Ä is p-productive.

Proof. Let/be a productive p-function for B.

(i) If A cz B, the productive p-function for B — A will be n(x) =/(g(x)),

where g is a p-function such that Wg{x) = Wx U A.

(ii) If B <= A, the productive p-function for B KJ Ä will be n'(x) = /(g'(x)),

where g' is a p-function such that Wg^X) = W^ nA

Corollary 10.13. Every p-productive set B has uncountably many p-productive

subsets.

Proof. By Theorem 10.6 B has a p-infinite recursively enumerable subset A.

The construction of Theorem 10.12 (i) shows that for any set D suchthat

(fl — A) <zz D <zz B, D is p-productive. But there are uncountably many such sets D.
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