$\lambda$-continuous Markov chains
HTML articles powered by AMS MathViewer
- by Shu-teh C. Moy
- Trans. Amer. Math. Soc. 117 (1965), 68-91
- DOI: https://doi.org/10.1090/S0002-9947-1965-0185669-5
- PDF | Request permission
References
- R. V. Chacon and D. S. Ornstein, A general ergodic theorem, Illinois J. Math. 4 (1960), 153–160. MR 110954, DOI 10.1215/ijm/1255455860
- Kai Lai Chung, Markov chains with stationary transition probabilities, Die Grundlehren der mathematischen Wissenschaften, Band 104, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0116388, DOI 10.1007/978-3-642-49686-8
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896
- J. L. Doob, Discrete potential theory and boundaries, J. Math. Mech. 8 (1959), 433–458; erratum 993. MR 0107098, DOI 10.1512/iumj.1959.8.58063
- Jacob Feldman, Subinvariant measures for Markoff operators, Duke Math. J. 29 (1962), 71–98. MR 186788
- T. E. Harris, The existence of stationary measures for certain Markov processes, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 113–124. MR 0084889
- T. E. Harris and Herbert Robbins, Ergodic theory of Markov chains admitting an infinite invariant measure, Proc. Nat. Acad. Sci. U.S.A. 39 (1953), 860–864. MR 56873, DOI 10.1073/pnas.39.8.860
- Eberhard Hopf, The general temporally discrete Markoff process, J. Rational Mech. Anal. 3 (1954), 13–45. MR 60181, DOI 10.1512/iumj.1954.3.53002
- G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313–340. MR 123364
- Jacques Neveu, Sur le théorème ergodique ponctuel, C. R. Acad. Sci. Paris 252 (1961), 1554–1556 (French). MR 122958
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 117 (1965), 68-91
- MSC: Primary 60.65
- DOI: https://doi.org/10.1090/S0002-9947-1965-0185669-5
- MathSciNet review: 0185669