Elementary methods in the theory of primes
Author:
Patrick R. Ahern
Journal:
Trans. Amer. Math. Soc. 118 (1965), 221-242
MSC:
Primary 10.42
DOI:
https://doi.org/10.1090/S0002-9947-1965-0180537-7
MathSciNet review:
0180537
Full-text PDF Free Access
References | Similar Articles | Additional Information
- S. A. Amitsur, On arithmetic functions, J. Analyse Math. 5 (1956/57), 273–314. MR 105396, DOI https://doi.org/10.1007/BF02937347
- S. A. Amitsur, Some results on arithmetic functions, J. Math. Soc. Japan 11 (1959), 275–290. MR 142498, DOI https://doi.org/10.2969/jmsj/01140275
- Edmund Landau, Über Ideale und Primideale in Idealklassen, Math. Z. 2 (1918), no. 1-2, 52–154 (German). MR 1544310, DOI https://doi.org/10.1007/BF01212899
- H. R. Pitt, A general Tauberian theorem related to the elementary proof of the prime number theorem, Proc. London Math. Soc. (3) 8 (1958), 569–588. MR 100744, DOI https://doi.org/10.1112/plms/s3-8.4.569 ---Tauberian theorems, Oxford, 1958.
- Atle Selberg, An elementary proof of the prime-number theorem, Ann. of Math. (2) 50 (1949), 305–313. MR 29410, DOI https://doi.org/10.2307/1969455
- Atle Selberg, An elementary proof of the prime-number theorem for arithmetic progressions, Canad. J. Math. 2 (1950), 66–78. MR 33306, DOI https://doi.org/10.4153/cjm-1950-007-5
- William Forman and Harold N. Shapiro, Abstract prime number theorems, Comm. Pure Appl. Math. 7 (1954), 587–619. MR 63396, DOI https://doi.org/10.1002/cpa.3160070308
Retrieve articles in Transactions of the American Mathematical Society with MSC: 10.42
Retrieve articles in all journals with MSC: 10.42
Additional Information
Article copyright:
© Copyright 1965
American Mathematical Society