ON THE FIELD EXTENSION BY COMPLEX MULTIPLICATION

BY

TOMIO KUBOTA

An abelian variety A with sufficiently many complex multiplications determines over a certain algebraic number field F an abelian extension K_c, namely, the union of all extensions corresponding to ideal sections of A in the sense of the theory of complex multiplication. If we observe K_c as a subfield of the maximal abelian extension K_a of F, there arises a problem to investigate which part of K_a is covered by K_c. In the classical case where A is an elliptic curve, it is known that $K_a = K_c$, and there is also a result obtained in [4] for the general case.

In the present paper, we shall define for any abelian extension K over F and for any prime number l the l-dimension $\dim_l(K/F)$ of K/F, and show that $\dim_l(K_c/F)$ is, for every l, equal to a very simple invariant which we shall call the rank of A and denote by $\operatorname{rank} A$. The rank of A depends only on an elementary, group theoretical property of the CM-type to which A belongs, and $\operatorname{rank} A \leq \dim A + 1$. After the proof of this main result, we shall give an example of nondegenerate abelian variety, i.e., an abelian variety with $\operatorname{rank} A = \dim A + 1$. Such an example is given by the Jacobian variety of a hyperelliptic curve of Fermat type. At the end of the paper, we shall add a remark that $\dim_l(K_a/F) = \dim_l(K_c/F)$ holds for some special cases where, among others, a condition about the unit group of F with respect to l is satisfied. This fact suggests that, in many cases, a large part of the maximal abelian extension is obtained by complex multiplication.

1. Preliminaries. First of all, we propose to summarize some results about infinite abelian groups. (For details, see [1].) We denote by l a prime number, and by \mathbb{Q}_l [resp. \mathbb{Z}_l] the rational l-adic field [resp. the ring of l-adic integers]. A discrete abelian group X is called a torsion group if every element of X has a finite order, and X is called an l-group if every element of X has a finite order which is a power of l. An element x of an abelian l-group is called divisible if there exists an element $y \in X$ with $x = y^m$ for any power l^m of l. If every element of X is divisible, X is called divisible. The union X_∞ of all divisible subgroups of an abelian l-group X is also a divisible subgroup of X, which is called the maximal divisible subgroup of X. The character group $\operatorname{char} X_\infty$ of X_∞ becomes in an obvious way a torsion free \mathbb{Z}_l module. If $\operatorname{char} X_\infty$ is finitely generated over \mathbb{Z}_l, we call the dimension...
of char X_{∞} over \mathbb{Z}_l the dimension of X, and denote it by $\dim X$. Let X, X_1, X_2 be three abelian l-groups with finite dimensions. Then the exactness of

$$0 \rightarrow X_1 \rightarrow X \rightarrow X_2 \rightarrow 0$$

implies

$$\dim X = \dim X_1 + \dim X_2$$

whenever one of the following two conditions is satisfied: (i) either X_1 or X_2 is a finite group; (ii) X_1 is divisible.

If X is a torsion abelian group, then there is a natural decomposition $X = \prod_i X_i$ of X, where X_i is the l-component of X, i.e., the maximal l-group contained in X. Under this situation, we can define the l-dimension $\dim_l X$ of X by setting $\dim_l X = \dim X_i$.

Let K be an abelian extension over an algebraic number field F of finite degree, and let $G = G(K/F)$ be the Galois group of K/F. Then G is a compact abelian group, and the character group $\text{char} G$ of G is a discrete, countable, torsion abelian group. Furthermore, it follows from the class field theory that $\dim_{\text{char}} G$ is finite for any prime number $l | 2$, which will be called the l-dimension of K/F and will be denoted by $\dim_l (K/F)$. We say that K/F is a divisible l-extension, if $\text{char} G$ is a divisible l-group. If in general $\dim_l (K/F) = d$, then K/F contains a subfield K' such that $G(K'/F)$ is isomorphic to \mathbb{Z}_l^d. Namely, K' is the field corresponding to the maximal divisible subgroup of the l-component of $\text{char} G$. The field K' is uniquely determined. K'/F is divisible, and every divisible subfield of K/F is contained in K'. We shall call the field K' the maximal divisible l-subfield of K/F.

We now propose to recall some terminologies and results in the theory of complex multiplication of abelian varieties. For details we refer to [5]. Let F be an algebraic number field of degree $n = 2m$ which contains a totally imaginary subfield F' as a quadratic extension of a totally real field, and let $\{\phi_i\}$ be the set of m distinct isomorphisms of F into \mathbb{C}. Then the pair $(F; \{\phi_i\})$ is called a CM-type if, for any i, j, the restrictions of ϕ_i, ϕ_j to F' are not complex conjugates of each other. Let L be a normal extension over \mathbb{Q} containing F, and let ϕ_i denote also a fixed prolongation of ϕ_i to L. Set, furthermore, $G(L/Q) = G$, $G(L/F) = H$, and $S = H\phi_1 + \cdots + H\phi_m$. Then the CM-type $(F; \{\phi_i\})$ is called primitive if $\gamma S = S$ ($\gamma \in G$), implies $\gamma \in H$. For a primitive CM-type, we have $F = F'$. Let now H^* be the group of all $\gamma \in G$ such that $S \gamma = S$, let F^* be the field corresponding to H^*, and let $\{\psi_i\}$ be the set of all distinct isomorphisms of F^* into \mathbb{C} induced by the elements of S^{-1}. Then $(F^*; \{\psi_i\})$ is a primitive CM-type which is called the dual of $(F; \{\phi_i\})$. A primitive CM-type is the dual of its dual. If $(F^*; \{\psi_i\})$ is the dual of a CM-type $(F; \{\phi_i\})$, and α [resp. α] is a number [resp. an ideal of F], then α^{ϕ_i} [resp. α^{ψ_i}] is a number [resp. an ideal of F^*].

Let $(F; \{\phi_i\})$ be a CM-type, and let A be an abelian variety belonging to the
dual \((F^*; \{\psi_i\})\) of \((F; \{\phi_i\})\) in the sense of the theory of complex multiplication. Let \(b\) be an integral ideal of \(F^*\), let \(b \neq 0\) be a natural number divisible by \(b\), and let \(H(b)\) be the group of all ideals \(a\) prime to \(b\) of \(F\) such that there exists an element \(\mu \in F^*\) with

\[
\prod_i \phi_i^a = (\mu), \quad \mu \bar{\mu} = Na, \quad \mu \equiv 1 \pmod{b}.
\]

Then, the extension over \(F\) obtained by the \(b\)-section of \(A\) is the class field \(K_b\) over \(F\) corresponding to \(H(b)\). This is a main theorem in the theory of complex multiplication of abelian varieties [5] (see also [4]). The union \(\bigcup K_b\) of all \(K_b\) will be called the maximal extension obtained by complex multiplication of \(A\). For our purpose, it is not necessary to give a precise definition of an abelian variety belonging to a CM-type, the ideal section of an abelian variety, etc. Our starting point is simply the class field \(K_b\) over the ideal group \(H(b)\).

2. **Rank of a CM-type.** Let \((F; \{\phi_i\})\) be a CM-type and \((F^*; \{\psi_i\})\) be its dual. Let \(L, G, H, H^*,\) and \(S\) be as in §1. Furthermore, let \(\phi_i\) [resp. \(\psi_i\)] denote also a prolongation to \(L\) of the original \(\phi_i\) [resp. \(\psi_i\)], and define \(\gamma_{ij}\) by

\[
\gamma_{ij} = \begin{cases}
1, & \text{if } \phi_i \psi_j^{-1} \in S, \\
-1, & \text{otherwise.}
\end{cases}
\]

Then \(C = (\gamma_{ij})\) is an \(m \times m^*\) matrix, where \(2m = (F:Q)\), \(2m^* = (F^*:Q)\), and \(C\) depends neither on the choice of prolongations of \(\phi_i, \psi_i\), nor on the choice of \(L\). Now we define the rank of the CM-type \((F; \{\phi_i\})\) by

\[
\text{rank}(F; \{\phi_i\}) = \text{rank } C + 1.
\]

If we consider an abelian variety \(A\) belonging to \((F; \{\phi_i\})\), we shall call \(\text{rank}(F; \{\phi_i\})\) also the rank of \(A\), and use the notation \(\text{rank} A\). The rank is an elementary, group theoretical invariant of a CM-type, and we have obviously \(\text{rank}(F; \{\phi_i\}) \leq m + 1\). We say that \((F; \{\phi_i\})\) or an abelian variety belonging to \((F; \{\phi_i\})\) is nondegenerate if \(\text{rank}(F; \{\phi_i\}) = m + 1\). It follows easily from the definition that the rank of a CM-type is equal to the rank of its dual, and that a nondegenerate CM-type is primitive.

The following lemma explains a meaning of the rank of a CM-type.

Lemma 1. Notations being as above, let \(R(G)\) be the group ring of \(G\) over a principal ideal domain \(R\). Let \(\Phi\) be the operator which maps \(x \in R(G)\) to \(x^\Phi = \sum_{\sigma \in \sigma} x \sigma\). Then the dimension of \(R(G)^\Phi\) over \(R\) is equal to the rank of the CM-type \((F; \{\phi_i\})\).

Proof. Consider a general element \(x = \sum_{\xi \in G} x_\xi \xi\) of \(R(G)\). Then,

\[
x^\Phi = \sum_{\sigma \in \sigma} \left(\sum_{\xi} x_\xi \xi \right) \sigma = \sum_{\tau \in G} \left(\sum_{\xi} \delta_{\xi, \tau} x_{\xi^{-1}} \right) \tau,
\]
where
\[\delta_{\xi, \tau} = \begin{cases} 1, & \text{if } \xi \tau \in S, \\ 0, & \text{otherwise.} \end{cases} \]

For the proof of the lemma, it is sufficient to show \(\text{rank } D = \text{rank } (F; \{ \phi \}) \) with \(D = (\delta_{\xi, \tau}) \). Let \(\rho \in G \) be the complex conjugation of \(L \). Then,
\[
G = H\phi_1 + \cdots + H\phi_m + H\rho\phi_1 + \cdots + H\rho\phi_m \\
= H^*\psi_1 + \cdots + H^*\psi_m + H^*\rho\psi_1 + \cdots + H^*\rho\psi_m \\
= \psi_1^{-1}H^* + \cdots + \psi_m^{-1}H^* + \psi_1^{-1}\rho H^* + \cdots + \psi_m^{-1}\rho H^*
\]

and
\[
\delta_{h\xi, \tau h^*} = \delta_{\xi, \tau}, \\
\delta_{\rho \xi, \tau + \delta_{\xi, \tau} = 1}, \\
\delta_{\xi, \tau p + \delta_{\xi, \tau} = 1}
\]

for \(\xi, \tau \in G, h \in H, h^* \in H^* \) (cf. [5]). Therefore we have a relation between \(D \) and \(C \) in the following form containing a Kronecker product of matrices:
\[
D = \frac{1}{2} \begin{pmatrix} J + C & J - C \\ J - C & J + C \end{pmatrix} \times J^*,
\]

where \(J \) [resp. \(J^* \)] is an \(m \times m^* \) [resp. \((g/2m) \times (g/2m^*) \)] matrix whose entries are all 1, \(g \) being the order of \(G \). Denote by \(D' \) the first factor, including \(\frac{1}{2} \), of the above product. Then, \(\text{rank } D = \text{rank } D' \). To determine \(\text{rank } D' \), we may assume without any loss of generality that \(\psi_1 = 1 \) or \(\rho \). If \(\psi_1 = 1 \), then all the entries of the first column of \(\frac{1}{2} (J + C) \) are 1. If \(\psi_1 = \rho \), then all the entries of the first column of \(\frac{1}{2} (J - C) \) are 1.

Let now in general \(M, J \) be two matrices of the same size, and assume that the entries of \(M \) are 1 or 0, and that the entries of \(J \) are all 1. Then,
\[
\text{rank } \begin{pmatrix} M & J - M \\ J - M & M \end{pmatrix} = \text{rank } \begin{pmatrix} M & J \\ J & 2J \end{pmatrix}.
\]

If, furthermore, the entries of the first column of \(M \) are all 1, we have
\[
\text{rank } \begin{pmatrix} M & J \\ J & 2J \end{pmatrix} = \text{rank } \begin{pmatrix} M & 0 \\ J & J \end{pmatrix}
\]

and
\[
\text{rank } \begin{pmatrix} M & J - M \\ J - M & M \end{pmatrix} = \text{rank } M + 1 = \text{rank } (2M - J) + 1.
\]
If we apply this result to our special case of \(M = \frac{1}{2}(J + C) \) or \(M = \frac{1}{2}(J - C) \), we obtain

\[
\text{rank } D' = \text{rank } C + 1,
\]

which proves the lemma.

3. **Main result.** Our main result is the following:

Theorem 1. Let \((F; \{\phi_i\})\) be a CM-type, and let \(K_c\) be the maximal extension over \(F\) obtained by the complex multiplication of an abelian variety \(A\) belonging to the dual \((F^*; \{\psi_i\})\) of \((F; \{\phi_i\})\). Then

\[
\dim_l(K_c/F) = \text{rank } A
\]

for any prime number \(l\).

Proof. Let \(L\) be a normal field of finite degree over \(\mathbb{Q}\) which contains the absolute class field over \(F\). Then, for any ideal \(\alpha\) of \(L\), there is an element \(\mu_0 \in F\) such that \(N_{L/F}\alpha = (\mu_0)\). The product \(\mu = \prod \mu_0^{\phi_i}\) lies in \(F^*\), and we have \(\mu \bar{\mu} = Na\). In other words, we find a \(\mu \in F^*\) with \(\prod (N_{L/F}\alpha)^{\psi_i} = (\mu)\), \(\mu \bar{\mu} = Na\). This property determines \(\mu\) up to a root of unity. Furthermore, if we denote by \(b\) a natural number, by \(u(b)\) the group of residue classes mod \(b\) in \(F^*\) represented by numbers prime to \(b\), and by \(w(b)\) the subgroup of \(u(b)\) consisting of residue classes represented by roots of unity in \(F^*\), then \(a \rightarrow \mu\) defines a homomorphism of the group of ideals prime to \(b\) of \(L\) into \(u(b)/w(b)\). We denote the image of this homomorphism by \(c'(b)\).

Let \(K(b)\) be the extension over \(F\) obtained by the \((b)\)-section of \(A\). Then, by the class field theoretical characterization of \(K(b)\) given in §1, the Galois group of \(K(b)L/L\) is isomorphic to \(c'(b)\).

Let \(b_1, b_2, \ldots, b_k, \ldots\) be a sequence of natural numbers such that \(b_k\) divides \(b_{k+1}\), and that there exists a \(b_k \equiv 0 \pmod{N}\) for any natural number \(N\). Then, there is a natural epimorphism \(u(b_k) \rightarrow u(b_{k+1})\), and, since \(K_c = \bigcup K(b_k)\), the limit group \(\lim c'(b_k)\) is isomorphic to the Galois group of \(K_cL/L\). Denote by \(c(b)\) the subgroup of \(c'(b)\) consisting of images of all principal ideals prime to \(b\) of \(L\). Then, there is a natural epimorphism \(c(b_k) \rightarrow c(b_{k+1})\).

Now, in general, a commutative diagram of homomorphisms of additive groups

\[
\begin{array}{ccccccccc}
0 & 0 & 0 & & & & & & \\
\downarrow & \downarrow & \downarrow & & & & & & \\
C_1 & \leftarrow & C_2 & \leftarrow & C_3 & \leftarrow & & & \\
\downarrow & \downarrow & \downarrow & & & & & & \\
C'_1 & \leftarrow & C'_2 & \leftarrow & C'_3 & & & & \\
\downarrow & \downarrow & \downarrow & & & & & & \\
C''_1 & \leftarrow & C''_2 & \leftarrow & C''_3 & \leftarrow & & & \\
\downarrow & \downarrow & \downarrow & & & & & & \\
0 & 0 & 0 & & & & & & \\
\end{array}
\]
with exact columns and epimorphic horizontal mappings gives rise to an exact sequence

\[0 \to \lim C_k \to \lim C'_k \to \lim C''_k \to 0. \]

Apply this result to \(C_k = c(b_k), C'_k = c'(b_k), C''_k = c'(b_k)/c(b_k) \). Then, since \(C''_k \) is a homomorphic image of the ideal class group of \(L \), it follows from (1) that it is sufficient for our purpose to observe \(\lim c(b_k) \) instead of \(\lim c'(b_k) \).

Set \(\alpha^a = \prod (N_{L/F})^{a_\alpha} \) for \(\alpha \in L \). Then, \(\Phi \) defines a homomorphism of the multiplicative group of numbers prime to \(b \) in \(L \) into \(u(b) \). Let \(v(b) \) be the image of this homomorphism. Then we have \(c(b) = v(b)w(b)/w(b) \cong v(b)/v(b) \cap w(b) \). Apply this time (2) to \(C_k = v(b_k) \cap w(b_k), C'_k = v(b_k), C''_k = c(b_k) \). Then, since \(C_k \) is a subgroup of the group of roots of unity in \(F^* \), the determination of \(\dim_l(K_c/F) \) is reduced to the determination of \(\dim, \text{char} \lim v(b_k) \).

If \(b = \prod p^{a_\alpha} \) is the prime number decomposition of \(b \), then \(v(b) \) is the direct product of \(v(p^{a_\alpha}) \). This shows that

\[\lim v(b_k) \cong \prod \lim v(p^k), \]

where the product is extended over all prime numbers. But, for any \(p \), \(\lim v(p^k) \) is a subgroup of \(\lim u(p^k) \) which is isomorphic to the unit group \((F^* \otimes Q_p)^* \) of \(F^* \otimes Q_p \), and \((F^* \otimes Q_p)^* \) contains no subgroup isomorphic to \(Z_l \) unless \(p = l \).

The homomorphism \(\Phi \) is naturally extended to \(V = (L \otimes Q_l)^* \), and the image \(V^\Phi \) is a subgroup of \(U = (F^* \otimes Q_l)^* \). If we denote by \(U(l^k) \) the group of \(u \in U \) with \(u \equiv 1 \pmod{l^k} \), we have the following commutative diagram with natural homomorphisms:

\[
\begin{array}{ccc}
V^\Phi U(l^k)/U(l^k) & \to & V^\Phi U(l^{k+1})/U(l^{k+1}) \\
\downarrow & & \downarrow \\
v(l^k) & \to & v(l^{k+1}).
\end{array}
\]

Since \(V^\Phi \) is closed in \(U \), we have \(\lim v(l^k) = V^\Phi \). According to the theory of local fields, \(V \) contains a subgroup of finite index which is isomorphic to the additive group of the group ring \(Z_l(G) \) over \(Z_l \) of the Galois group \(G \) of \(L/Q \). Hence, by Lemma 1, the \(l \)-dimension of \(\text{char} V^\Phi \) is equal to rank \(A \), which proves the theorem.

Remark. By a similar argument used in this proof, we can also show that \(\text{char} \lim c'(l^k) \) has the same \(l \)-dimension as \(\text{char} \lim v(l^k) \). This means that the maximal divisible \(l \)-subfield of \(K_c/F \) is contained in the field obtained by \(l \)-power sections of \(A \).

4. **A special case.** As was already mentioned in §2, the rank of a CM-type \((F; \{\phi_i\}) \) is by definition not greater than \(m + 1 \) if \((F:Q) = 2m \). We call the difference \(m + 1 - \text{rank} (F; \{\phi_i\}) \) the defect of \((F; \{\phi_i\}) \). A CM-type, or an abelian
variety belonging to it, is nondegenerate if the defect of the CM-type is 0. Whereas we can find many nondegenerate CM-types through simple calculations, it sometimes turns out a nontrivial problem to determine the rank of a given CM-type. The main aim of the remaining part of the present paper is to show that the Jacobian varieties of certain well-known curves of Fermat type are nondegenerate. To do this, we require two lemmas.

Lemma 2. Let \((F; \{\sigma_i\})\) be a CM-type such that \(F/\mathbb{Q}\) is an abelian extension. Denote by \(G\) the Galois group of \(F/\mathbb{Q}\), and by \(\rho \in G\) the complex conjugation of \(F\). Then, the defect of \((F; \{\sigma_i\})\) is equal to the number of characters \(\psi\) of \(G\) satisfying \(\sum_i \psi(\sigma_i) = 0, \psi(\rho) = -1\).

Proof. Let \(\psi_1, \cdots, \psi_m\) be all characters of \(G\) which take \(-1\) at \(\rho\). Set

\[
\Psi = \begin{bmatrix}
\psi_1(\sigma_1) & \cdots & \psi_m(\sigma_1) \\
\vdots & \ddots & \vdots \\
\psi_1(\sigma_m) & \cdots & \psi_m(\sigma_m)
\end{bmatrix}.
\]

Then \(\Psi^{-1} = (1/m)^t \Psi\). Set now for \(\tau \in G\)

\[
e_{ij} = \begin{cases} 1, & \text{if } \sigma_i \tau = \sigma_j, \\ -1, & \text{if } \sigma_i \tau = \rho \sigma_j, \\ 0, & \text{otherwise}, \end{cases}
\]

and put \((e_{ij}) = E(\tau)\). Furthermore, set

\[
D(\tau) = \begin{bmatrix}
\psi_1(\tau) \\
\vdots \\
\psi_m(\tau)
\end{bmatrix}.
\]

Then we have \(E(\tau)\Psi = \Psi D(\tau)\), so that \(E(\tau)\Psi = \Psi D(\tau)\). If on the other hand \(J_j\) is the \(m \times m\) matrix whose entries of the \(j\)th column are all 1 and other entries are all 0, then the entries \(c_{ij}\) of the matrix

\[
C' = E(\sigma_1)J_1 + \cdots + E(\sigma_m)J_m
\]

are given by

\[
c_{ij}' = \begin{cases} 1, & \text{if } \sigma_i \sigma_j \in S, \\ -1, & \text{if } \sigma_i \sigma_j \in \rho S, \end{cases}
\]

where \(S = \{\sigma_i\}\). Denote now by \(H^*\) the group of all \(\gamma \in G\) such that \(S\gamma = S\), and recall that the dual of \((F; \{\sigma_i\})\) consists of the subfield \(F^*\) of \(F\) corresponding to \(H^*\) and the set of distinct isomorphisms induced on \(F^*\) by the elements of \(\{\sigma_i^{-1}\}\) Then it follows from the definition of the matrix \(C\) in §2 that \(C'\) is of the form \((C, C, \cdots, C)\).
Thus we have rank $C' = \text{rank } C$. Therefore the defect of $(F; \{\sigma_i\})$ is equal to $m - \text{rank } C'$. If we set here

$$D = \begin{pmatrix}
\sum_i \psi_i(\sigma_i) \\
\cdots \\
\sum_i \psi_m(\sigma_i)
\end{pmatrix},$$

then

$$C' = \frac{1}{m} (\overline{\Psi} D(\sigma_1) \Psi J_1 + \cdots + \overline{\Psi} D(\sigma_m) \Psi J_m)$$

$$= \frac{1}{m} \overline{\Psi} (D(\sigma_1) DJ_1 + \cdots + D(\sigma_m) DJ_m)$$

$$= \frac{1}{m} \overline{\Psi} D(D(\sigma_1) J_1 + \cdots + D(\sigma_m) J_m) = \frac{1}{m} \overline{\Psi} D \Psi^{-1}.$$

So, $C' = \overline{\Psi} D \Psi^{-1}$. This proves the lemma.

Lemma 3 (H. W. Leopoldt). Let $p = 2m + 1$ be an odd prime number, and let ψ be a character of the group of nonzero residue classes of $\mathbb{Z}[\zeta_p]$ such that $\psi(-1) = -1$. Then, $\sum_{a=1}^{m} \psi(a) \neq 0$.

Proof. Consider the sum

$$\Theta = \sum_{a=1}^{2m} \psi(a) a.$$

Then we have always $\Theta \neq 0$, because Θ is a factor contained in the class number formula for the pth cyclotomic field. Set now

$$A = \sum_{a=1}^{m} \psi(a) a, \quad A' = \sum_{a=m+1}^{2m} \psi(a) a,$$

$$A_1 = \sum_{a=1}^{m} \psi(2a - 1)(2a - 1), \quad A_2 = \sum_{a=1}^{m} \psi(2a) \cdot 2a,$$

$$B = \sum_{a=1}^{m} \psi(a), \quad B_1 = \sum_{a=1}^{m} \psi(2a - 1).$$

Then $\Theta = A + A'$, and

$$A' = \sum_{a=1}^{m} \psi(p-a)(p-a) = -pB + A.$$

Hence

$$\Theta = 2A - pB.$$
On the other hand, since

\[B_1 = - \sum_{a=1}^{m} \psi(p - (2a - 1)) \]

we have

\[A_1 = - B_1 + 2 \sum_{a=1}^{m} \psi(2a - 1)a = - B_1 - 2 \sum_{a=1}^{m} \psi(p - (2a - 1))a \]

\[= - B_1 + 2\psi(2) \sum_{a=1}^{m} \psi(m + 1 - a)a \]

\[= - B_1 - 2\psi(2) \sum_{a=1}^{m} \psi(m + 1 - a)(m + 1 - a) \]

\[- 2\psi(2)(m + 1) \sum_{a=1}^{m} \psi(m + 1 - a) \]

\[= \psi(2)B + 2\psi(2)A - \psi(2)(p + 1)B \]

\[= 2\psi(2)A - p\psi(2)B. \]

Therefore, it follows from \(\Theta = A_1 + A_2 \) and \(A_2 = 2\psi(2)A \) that

\[(4) \quad \Theta = 4\psi(2)A - p\psi(2)B. \]

By (3) and (4), we have

\[2(1 - 2\psi(2))A = p(1 - \psi(2))B. \]

So, using (3) again, one obtains finally

\[(1 - 2\psi(2))\Theta = p(1 - \psi(2))B - p(1 - 2\psi(2))B = p\psi(2)B. \]

This shows \(B \neq 0 \), which proves the lemma.

Denote by \(J \) the Jacobian variety of a complete, nonsingular model of the curve \(y^2 = 1 - x^p \), \(p = 2m + 1 \) being an odd prime number. Let \(\zeta \) be a primitive \(p \)th root of unity, and let \(\sigma_1, \ldots, \sigma_m \) be automorphisms of \(F = \mathbb{Q}(\zeta) \) determined by \(\zeta^{\sigma_i} = \zeta^i \) \((i = 1, \ldots, m) \). Then, the abelian variety \(J \) belongs to the primitive CM-type \((F; \{ \sigma_i \}) \), (see [5]), and it follows immediately from Lemma 2 and Lemma 3 that \((F; \{ \sigma_i \}) \) is nondegenerate. Thus we have the following

Theorem 2. Let \(p \) be an odd prime number. Then, the Jacobian variety of a complete, nonsingular model of the curve \(y^2 = 1 - x^p \) is nondegenerate.

Remark. Let \((F; \{ \phi_i \}) \) be a CM-type, let \(K_a \) be the maximal abelian extension
over F, and K_c be the maximal extension over F obtained by the complex multiplication of an abelian variety A belonging to the dual $(F^*; \{\psi_i\})$ of $(F; \{\phi_i\})$. Then, Theorem 1 shows $\dim_t(K_c/F) \leq m + 1$, if $2m = (F:Q)$. The equality holds if and only if $(F;\{\phi\})$ is nondegenerate.

Now, let us consider $\dim_t(K_a/F)$. The elements in $F \otimes Q$, which are congruent to 1 mod l form a multiplicative group U_1, and U_1 is regarded as a vector space over Z, because for any $u \in U_1$, $\alpha \in Z$, we can define u^n. The dimension of U_1 in this sense is $2m$. Denote by μ_l the dimension of Z_l-subspace of U_1 spanned by units of F contained in U_1. Then $\mu_l \leq m - 1$ by Dirichlet's unit theorem, and it is shown in [2] that $\dim_t(K_a/F) = 2m - \mu_l$. Therefore $\dim_t K_a/F \geq m + 1$, and the equality holds if and only if $\mu_l = m - 1$.

The equality $\mu_l = m - 1$ is equivalent to the assertion that the l-adic regulator as defined in [3] is different from 0. If this is the case, the above argument shows that $\dim_t(K_a/F) = \dim_t(K_c/F)$ for a nondegenerate CM-type $(F;\{\phi_i\})$. Therefore, by (1), the maximal divisible l-subfield of K_a/F coincides with the maximal divisible l-subfield of K_c/F.

It might be of some interest to point out that an analogous situation is also found in the case of cyclotomic extensions. Let F be a totally real field, let K_a be the maximal abelian extension over F, and let K_c be the maximal cyclotomic extension over F. Then it is easily seen that $\dim_t(K_a/F) = 1$ for any prime number l, and we have $\dim_t(K_a/F) = 1$ if $\mu_l = (F:Q) - 1$. This means that the maximal divisible l-subfield of K_a/F is the same as that of K_c/F if $\mu_l = (F:Q) - 1$.

REFERENCES

2. T. Kubota, Galois group of the maximal abelian extension over an algebraic number field, Nagoya Math. J. 12 (1957), 177-189.