Classical expansions and their relation to conjugate harmonic functions
HTML articles powered by AMS MathViewer
- by B. Muckenhoupt and E. M. Stein
- Trans. Amer. Math. Soc. 118 (1965), 17-92
- DOI: https://doi.org/10.1090/S0002-9947-1965-0199636-9
- PDF | Request permission
References
- Richard Askey and Isidore Hirschman Jr., Weighted quadratic norms and ultraspherical polynomials. I, Trans. Amer. Math. Soc. 91 (1959), 294–313. MR 107772, DOI 10.1090/S0002-9947-1959-0107772-5
- L. Bers, Functional-theoretical properties of solutions of partial differential equations of elliptic type, Contributions to the theory of partial differential equations, Annals of Mathematics Studies, no. 33, Princeton University Press, Princeton, N.J., 1954, pp. 69–94. MR 0070009
- Lipman Bers and Abe Gelbart, On a class of differential equations in mechanics of continua, Quart. Appl. Math. 1 (1943), 168–188. MR 8556, DOI 10.1090/S0033-569X-1943-08556-1
- S. Bochner, Sturm-Liouville and heat equations whose eigenfunctions are ultraspherical polynomials or associated Bessel functions, Proceedings of the conference on differential equations (dedicated to A. Weinstein), University of Maryland Book Store, College Park, Md., 1956, pp. 23–48. MR 0082021
- S. Bochner and K. Chandrasekharan, Fourier Transforms, Annals of Mathematics Studies, No. 19, Princeton University Press, Princeton, N. J.; Oxford University Press, London, 1949. MR 0031582
- Douglas L. Guy, Hankel multiplier transformations and weighted $p$-norms, Trans. Amer. Math. Soc. 95 (1960), 137–189. MR 120506, DOI 10.1090/S0002-9947-1960-0120506-1
- Carl S. Herz, On the mean inversion of Fourier and Hankel transforms, Proc. Nat. Acad. Sci. U.S.A. 40 (1954), 996–999. MR 63477, DOI 10.1073/pnas.40.10.996
- I. I. Hirschman, The decomposition of Walsh and Fourier series, Mem. Amer. Math. Soc. 15 (1955), 65. MR 72269 E. Hopf, Elementare Bemerkungen über die Lösungen partieller Differentialgleichungen von elliptischen Typus, S.-B. Berlin Math. Ges. (1927), 147-152.
- J. Horváth, Sur les fonctions conjuguées à plusieurs variables, Nederl. Akad. Wetensch. Proc. Ser. A. 56 = Indagationes Math. 15 (1953), 17–29 (French). MR 0053276
- Alfred Huber, On the uniqueness of generalized axially symmetric potentials, Ann. of Math. (2) 60 (1954), 351–358. MR 64284, DOI 10.2307/1969638 R. O’Neil, Convolution operators and $L(p,q)$ spaces, Duke Math. J. 30 (1963), 129-142.
- Harry Pollard, The mean convergence of orthogonal series of polynomials, Proc. Nat. Acad. Sci. U.S.A. 32 (1946), 8–10. MR 14499, DOI 10.1073/pnas.32.1.8
- Harry Pollard, The mean convergence of orthogonal series. II, Trans. Amer. Math. Soc. 63 (1948), 355–367. MR 23941, DOI 10.1090/S0002-9947-1948-0023941-X
- E. M. Stein, Note on singular integrals, Proc. Amer. Math. Soc. 8 (1957), 250–254. MR 88606, DOI 10.1090/S0002-9939-1957-0088606-8
- E. M. Stein, Conjugate harmonic functions in several variables, Proc. Internat. Congr. Mathematicians (Stockholm, 1962) Inst. Mittag-Leffler, Djursholm, 1963, pp. 414–420. MR 0176098
- Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137–174. MR 173019, DOI 10.1007/BF02545785 G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ. Vol. 23, Amer. Math. Soc., Providence, R. I., 1939. E. C. Titchmarsh, Introduction to the theory of Fourier integrals, Clarendon Press, Oxford, 1937.
- I. N. Vekua, Obobshchennye analiticheskie funktsii, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1959 (Russian). MR 0108572 G. N. Watson, Theory of Bessel functions, Cambridge Univ. Press, Cambridge, 1922. —, Notes on generating functions of polynomials. III. Polynomials of Legendre and Gegenbauer, J. London Math. Soc. 8 (1933), 289-292.
- Alexander Weinstein, Discontinuous integrals and generalized potential theory, Trans. Amer. Math. Soc. 63 (1948), 342–354. MR 25023, DOI 10.1090/S0002-9947-1948-0025023-X
- Alexander Weinstein, Generalized axially symmetric potential theory, Bull. Amer. Math. Soc. 59 (1953), 20–38. MR 53289, DOI 10.1090/S0002-9904-1953-09651-3
- G. Milton Wing, The mean convergence of orthogonal series, Amer. J. Math. 72 (1950), 792–808. MR 37923, DOI 10.2307/2372296
- A. Zygmund, Trigonometric series. 2nd ed. Vols. I, II, Cambridge University Press, New York, 1959. MR 0107776
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 118 (1965), 17-92
- MSC: Primary 42.15
- DOI: https://doi.org/10.1090/S0002-9947-1965-0199636-9
- MathSciNet review: 0199636