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0. Introduction.

0.1. Let IF be a semi-normed linear space with semi-norm || • ||, Fa closed

linear subspace, and xeW. If inf [ || x — y || : y e F] is attained, for y = y* eV,

say, then we call y* a best approximation to x out of V. A central problem of

approximation theory is the study of the characterization and uniqueness of such

best approximations.

This problem can be given an air of greater generality by allowing F to be an

arbitrary closed affine subspace of W. However, by translating V and x by some

vector in V, we can arrange that V pass through 0, so that we are reduced to the

case that V is actually a linear subspace (cf. Singer [16]). In this way we can

encompass the case that y varies in V subject to constraints of the form/(y) = c,

where/is a continuous linear functional on V.

The uniqueness question will receive much attention in what follows. When V

is finite dimensional, a case of most frequent interest, the existence of best approxi-

mations is proved by a routine compactness argument (Achieser [1, p. 10]). If

• I is a norm, and is strictly convex (if || x | ^ p, | y | z% p and x ^ y, then

x + y I < 2p), then best approximations, when they exist, are unique (Achieser

T]).This settles the uniqueness question for the V spaces with 1 < p < co, since

their norms are strictly convex. However, in L1 and L°° the norms are not strictly

convex, and the uniqueness problem requires further study.

A natural approach to the study of best approximations is to consider the

derivative d/dt \\x — y — tz\\\t = 0. If y is a best approximation out of F to x,

we should expect this derivative to be 0 for all zeV. This approach is successful

in studying approximation in L2and can be used to advantage in the LF spaces

with 1 < p < co. However, in L1and L°°the derivative may fail to exist for the

same reason that the norm is not strictly convex: spheres may have facets and

corners. Therefore, since our concern is with approximation in L1, §1 will be

devoted to a careful study of the differentiability of the norm in L1, and the proof

of a basic variational lemma.

0.2. The setting for our paper is as follows: we are given a positive measure

space, (X, p), and we consider the linear space, W, of p-summable functions on X

under the semi-norm
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(o.i) |/|=J |/W| dM*).

Frequently, we shall confine our attention to certain subspaces of W on which

I • I is actually a norm. For example, we consider the continuous and the mero-

morphic functions in the complex plane. Otherwise, it will be convenient to pass

to the quotient space L\X,p) of JF by the functions which vanish almost every-

where (a.e.), so that | • | again becomes a norm. Here, however, we shall make

the usual harmless abuse of language and speak of the equivalence classes as

being functions and having values (determined almost everywhere), etc.

Thus far, nothing has been said about whether the functions in W axe to be

real- or complex-valued. When a distinction is to be made, we indicate it by a

subscript : LC(X, p), LR(X, p). When the subscript is missing, our remarks apply to

both cases. Lc(X,p) can, of course, be viewed as a real vector space simply by

restricting multiplication to real scalars.

We define sgn x to be x/1 x | if x # 0, and sgn 0 = 0. sgn x = x\ | x |, is the

complex conjugate of sgn x.

In §2, we shall apply our results on differentiating the norm and our variational

lemma to proving uniqueness and nonuniqueness in various special situations.

Our principal result is the extension of a classical theorem of Jackson to the

complex case, with various examples to show that our theorem cannot be much

improved.

§3 deals with the case when p is concentrated in finitely many points, and con-

cludes with a brief survey, in the context of our approach, of mostly known

results for the case of continuous functions on an interval.

0.3. Some of these results were presented before the meeting of the American

Mathematical Society in Worcester in October 1960. One of the authors (Rivlin)

wishes to acknowledge many enlightening conversations with Professor H. S.

Shapiro of New York University on the subject of L1 approximation. In particular,

it was Professor Shapiro who first brought to his attention the variational lemma

from which we have derived most of our results. Part of the work of B. R. Kripke

was done during the tenure of a National Science Foundation Graduate Fellowship,

and part was supported by the United States Air Force under contract

AF-AFOSR-467-63.The original work on this paper was done during the summer

of 1960 at the International Business Machines Corp. Mathematical Research

Center.

1. Differentiability of the norm.

1.1. We begin with some definitions. If/is p-summable and g is bounded

a.e. and /i-measurable, we abbreviate the inner product ¡xf(x)s(x)dp by

"(/,g)." Z(f) = {xeX:f(x) = 0} is the set of zeros off. For/eL1, Z(f) may

be found by choosing a representative of the equivalence class / Z(f) is then
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an equivalence class of measurable sets, with two sets, A and B, being identified

if their symmetric difference, (A \B)\J(B\A) has measure zero. For a set, V,

of functions, put

Z(F)=fl{Z(/):/eF}.

Z(V) is the set of common zeros of functions in V. The remainder, X \Z(f) or

X \Z(V), will be denoted by "R(/)" or "R(F)" respectively.

1.2. Theorem 1.1. For f,peLliX,p) and real t,

(1.1) liml/í[|/+íp||-||/¡ - |*| f     \p\ dp] = Re(p,sgn/).
<->0 J Z(f)

Proof.

i/<[||/+'p||-||/||-|»i[  \p\dp-]
•JZ(f)

' dp

Now as f->0, the integrand approaches 2Re(p/)/2|/| = Re(p sgn/) on R(f);

while |(|/+ tp\ - |/¡)/í| S \p\, and p is summable. The theorem is now proved

by applying the Lebesgue dominated convergence theorem, taking into account

that sgn/vanishes on Z(f).

Corollary 1.2. If p(Z(f)C\R(V)) = 0 then ||/+fp| is differentiable at 0
as a function of t for each peV, and

(L2) ^||/+fp|||, = 0 = Re(p,sgn/).

(1.1) shows that the one-sided derivatives of the norm exist in any case. This,

in fact, is true in any normed linear space (see Dunford and Schwartz [4, pp.

445-453, pp. 471-473] or James [7]).

The condition p(Z(f) n R(V)) = 0 of the corollary is actually necessary for

the derivative d/di||/+fp| |( = 0 to exist when F is a finite dimensional subspace

of Ü . Say Px,—,Pn is a basis for V. Then Z(V) = Z(px) n ••■ O Z(p„), so that

R(V) = R(px) U - U R(Pn). If p(Z(f) n R(V)) > 0, then p(Z(/) n R(pt)) > 0 for
some k, and it is then clear from (1.1) that the derivative along pk does not exist

atO.

1.3. We now present the variational lemma from which most of our results

will be deduced.

Theorem 1.3.  A necessary and sufficient condition that
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||/-Po|á|/-(Po + cp)|

for all scalars c (real c in the real case, complex c in the complex case) is that

(1.3) |(p,sgn(/-p0))| ^ Í \p\  dp.
JZ(f-po)

If

(1-4) |(P,sgn(/-po))| < M dp,
JZ(f-p0)

then when c # 0 we have \f— Po \ < ||/— (Po + °p) \\.

Proof. If 0 < r < 1, the triangle inequality yields |/ — (p0 + tcp)

(l — t)\\f—p0\\ + t\\f—(p0 + cp)\\, from which we deduce |/— (p0 + tcp

\\f- Po I Ú i[ \\f-iPo + cp) I - |/- Po I ] • Thus (1.1) implies

\cp\  dp - Re (cp, sgn (f - p0))
Jz(f-p0)

(1.5)
= liml/i [ |/- p0+ t(-cp) |- ||/- p0 I ] ^ ||/- (p0 + cp) || - ||/- p0 I .

Now if (1.3) holds, it remains valid with p replaced by cp. From this we conclude

immediately that the left-hand side of (1.5) is non-negative, proving the sufficiency

of (1.3). If c # 0 and (1.4) holds, this left-hand side is positive, proving the final

statement of the theorem.

Suppose    (1.3)    fails.    Then    putting    c = sgn(p,sgn(/—p0)),    we    have

<

Re(cp,sgn(/- p0)) = |(cp,sgn(/ - p0))

lim^o+ 1 /1[ |/- (Po + tcp) I - ||/- Po

>     Sz(f-po)\CP\dli-     ThUS     (L5)     gÍVeS
] < 0. When t is positive and small

enough, it follows that |/— (p0 + icp)|] < ¡/— p0 ||, proving the necessity of (1.3).

The actual form in which this variational lemma is most useful is the following:

Corollary 1.4.   Let V be a linear subspace of If, p0e V. Then

\\f-Po\\i\\f-p\\

for all peV if, and only if, (1.3) holds for all peV. If (I A) holds for all nonzero

peV, then p0 is the unique best approximation to f out of V.

Another corollary to Theorem 1.3 which is frequently used in the literature on

L1 approximation is the following orthogonality relation.

Corollary 1.5. Ifp0 is a best approximation to f out of V and p(Z(f—p0)) = 0,

then for all peV

(1.6) (P,sgn(/-p0)) = 0.
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Conversely, if (1.6) holds for some p0eV and all peV, then p0 is a best approxi-

mation to f out of V.

Theorem 1.3 has not, to the best of our knowledge, previously appeared in print

in its full generality. James [7] obtains the result for the real case in a somewhat

different context. The orthogonality relation, Corollary 1.5, seems to be widely

known, in the real case, at least. Achieser [1, pp. 82-85] and Laasonen [11] prove

it in the real case, under strong restrictions, by direct differentiation. Havinson

[5] proves a similar result. He shows that when p(Z(f— p0)) > 0, (1.6) continues

to hold if sgn(/—po) is altered appropriately on Z(f—p0). Singer [15] gives

a proof of the corollary in the real case, and attributes the result to M.G. Kreïh.

However, in quoting KreTn (as Dr. Singer has informed us) the author omitted

a hypothesis equivalent to assuming that p(Z(f — p0)) = 0. Therefore, his proof

and conclusion are convincing only subject to this hypothesis. (There is a

typographical error in Singer's reference to Kreih. Instead of "[1]," there should

appear "[2]," which is Kreïh and Achieser [10].) Indeed, we shall see several

examples below in which (1.6) fails when p(Z(f— p0)) > 0. This error, the omission

of the hypothesis p(Z(f — p0)) = 0, occurs also in an exercise in Dunford and

Schwartz [4, p. 371, Ex. 84].

2. Uniqueness. This section is devoted to a discussion of conditions on

X, p, f, and V which insure that / have a unique best approximation out

of V.

2.1. One phenomenon which has marked influence on uniqueness is the pres-

ence of atoms in X. An atom is a measurable subset, A, of X (for example, a point

having positive mass) satisfying

(2.1) p(A) > 0,
(2.2) if £ is a measurable subset of A, either p(E) = 0 or p(A \E) = 0.

It is convenient when F çz E and p(E \ F) = 0 to say that E consists essentially

ofF.

When X has no atoms, the situation is as follows:

Theorem 2.1. If(X,p) is atom-free, and V is a finite-dimensional subspace

of Ü, then there exists anfeL1 which has infinitely many best approximations

out of V.

The real case of this theorem was proved by KreTn [10] for Lebesgue measure

on an interval of the real line; and Phelps [13] proved the real case of the general

theorem. Therefore, in place of a proof, we shall confine ourselves to the remark

that the proof for the complex case follows the lines of Phelps' argument, with

some extra work being required because of the larger number of values which

sgn x can assume when x is a complex variable.

Some additional structure must be introduced if we want best approximations

to be unique. As in the case of uniform approximation, it is fruitful to superimpose
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on Y a topology compatible with p. When X has a topology, we shall henceforth

require that p have the following properties:

(2.3) Each point in X and each open subset of X is p-measurable.

(2.4) There is a closed set C £ X such that

(a) piX\C) = 0,
(b) if U is open and U O C is not empty, then p(U) > 0.

It is easy to see that there can be at most one set, C, satisfying (2.4). When there

is such a set, we call it the carrier of p and denote it by "C(/i)." C(p) will always

exist if the topology for X has a countable base; or if it is paracompact (Bourbaki

[3, pp. 67-78]). In either case, C(u) is the complement of the largest open set of

measure zero.

In this context, it is natural to require that/and the functions in V be continuous.

A fundamental rôle in determining the uniqueness of approximations out of V

in such a situation will be played by the connectivity of the set C(p) \Z(V). As

an illustration, we have the following nonuniqueness theorem:

Theorem 2.2. Let X be a normal topological space, and let Py,---,p„ be

continuous functions which are a basis for the subspace V of L1.

(a) C(p) \Z(V) must contain at least n points.

(b) Suppose there are disjoint closed sets, E and F, such that

p(X \(Z(V) \J E U F)) = 0

and

(2.5) fE | p | dp is a norm on V,

(2.6) there is at least one peV such that JV|p| dp > 0. Then there are

continuous functions f,qy,---,q„ such  that

(2.7) for any scalars Sy,---,s„,Syqy + ■■■ + snqn and SyPy + ■■■ + snp„ have

the same zeros in FuF;

(2.8) / has infinitely many best approximations out of the subspace, Vo, of

L1 spanned by qy,---,q„.

Proof, (a) is evident, because Py,---,p„ are linearly independent as elements

ofL1.

(b) We use the following facts : The closed unit sphere in a normed linear space

of finite dimension is compact. Any two norms on a space of finite dimension

are equivalent. (Dunford and Schwartz [4, pp. 244-245].)

Since the semi-norm JV|p| dp is dominated by the norm ¡x\p\ dp on F, it

is continuous, and so attains its maximum on the set {pe V: \e\p\ dp Ú 1} at

a point p0. According to (2.6), 0 < M = J"F | p01 dp < oo.

Since X is normal, there are continuous functions, g and n, on X such that

g = 0 andn = l onE, while g=l and h = 0 on F. Put qi = (h + g¡M)pi, i = 0,---,n,

and f = (g¡M)po. The maximum of JV| a | dp on the set {q e Vo: jE\ q | dp z% 1}

is 1, and it is attained when q = q0.
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For any q e Vo,

f      \q\dp-z\  \q\dp^  \\q\dp
Jz(f) Je Jf

^ | Q | dp ^ q sgnfdp
jR(f) ¡Jx-Zlf)

because the set of points outside F where / does not vanish is contained in

I\(Z(K)U£uF), whose measure is 0. We conclude by Corollary 1.4 that

q* = 0 is a best approximation to / out of Vo.

But if 0 < t < 1, | q0 - tq0\ = (1 - f)| Qo\ ■ On F, then, \f - tq0 \ = |/| -11 q0 \.
By our choice of  q0,

\f-tQo\dp. = t      \q0\ dp+\  \f\ dp-t\\\q0\dp
Jx Je Jf Jf

= jjf\dp=jjf-q*\dp.

In our proofs of uniqueness, we shall need the following result:

Theorem 2.3. Iff'eL1(X,p) has two distinct best approximations out of V,

then there are anfeL1, and a nonzero qeV such thatf — f e V and Xq is a best

approximation to fin V whenever — 1 ^ X ¿j 1.

// p is a-finite, we can choose a p* = Xq # 0 so that sgn(/— Xp*) = sgn f for

all Xe [—1,1] a.e. There is a real-valued function, g, such that \g(x)\ < 1 for

all x and p* = gf a.e. In particular, for almost all x, f(x) = 0=>p(x) = 0.

Proof('). For the first assertion, let pt,p2 e V be distinct best approximations

to/'. It then suffices to put/ = /'- (l/2)(pi + p2), q = (l¡2)(px-p2).

Let F(X) = R(f) n Z(f- Xq). It is easy to see that when Xt # X2, F(Xy) n F(X2)

is empty. If p is a-finite, at most countably many of the sets F(X), — 1 ^ X ̂  1,

can have positive measure. Thus, we can choose a nonzero Xe [ — 1,1] such that

p(F(X)) = p(F(-X)) = 0. Put p* = Xq. We have

jj/± (1 / 2) p* | dp = (112)J* |/| dp + (1 / 2)Jj/ ± p* | dp

-f[(l/2)|/|+(l/2)|/±p*|]d/t,

which can be true (equality in the triangle inequality) only if sgn /=sgn(/± p*)

a.e. on R = R(f) n(R(f+ p*) UR(f - p*)). By our choice of p*, it follows that

(!) Our argument is adapted from Ptak [14]. The theorem is similar to parts of Havinson's

[5] basic theorems (numbers 2 and 3). However, Havinson omits the hypothesis, necessary for

his proof, of cr-finiteness.
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sgn/= sgn(/± p*) a.e. on R(/). It is then clear that almost everywhere on R(/),

p*(x)//(x) must be real with absolute value less than 1.

Now |/| = |/±p*|| and

¡f±P*\\=   Í    (/±p*)siii/dp+f     \p*\dp
jR(f) Jz<f)

= ||/|± f     P*ign/dp+  f     \p*\dp.
JW) Jz(f)

Hence ± jR(fX p* sgn/ dp = |Z(/) [ p* | dp = 0. This shows that p* = 0 a.e. on

Z(/) and completes the proof.

2.2. There are two kinds of discontinuities which we can allow without

destroying uniqueness. In some cases, the functions in V can have discontinuities

on sets of measure zero. / also can have discontinuities of a type which we now

proceed to define.

Throughout this subsection, we shall suppose Y to be a separable metric space.

Let/ be defined on a subset, E, of X. For each xeX, we define A(f,E,x) to be

the set of points, c, in the extended complex plane (the plane plus a point at

infinity) for which

(2.9) there is a sequence {x„} of (possibly identical) points in E such that

lim x„ = x and lim/(x„) = c.

We say that x is of type I (with respect to / and E) if A(f, E, x) contains three

noncollinear complex numbers. We say that x is of type II if A(f, E,x) is a (finite,

infinite, or degenerate) line segment in the extended plane and

(2.10) if aeA(sgnf,E,x), there is a zeA(f,E,x) such that a = sgnz (z --£ co ).

If, in addition, 0 6 A(f, E, x), we shall say that x is of type 1I0.

These definitions, as well as the lemmas which follow are essentially those of

Havinson [5]. The rather awkward condition (2.10), which we shall need for

Lemma 2.6 below, is trivial if oo £A(f,E,x). It is, in fact, omitted by Havinson,

although without some such hypothesis, his main theorem, number 3, is false.

We shall give a counterexample below. Since, as far as we know, Havinsons' paper

is available only in Russian, we feel justified in sketching proofs of the following

lemmas, which are variations of his arguments:

Lemma 2.4. Let f be p-measurable on X. There is a subset, Ef, of X such

that

(2.11) p(X\Ef) = 0,
(2.12) if EçEf and p(Ef\E) = 0, then A(f,Ef,x) =A(f,E,x)for all xeX.

Proof. Let { U„} be a countable base for the topology of the extended plane. Put

F„ =f~1(Un). Let E„ be the carrier of the restriction of p to the separable metric

space V„. Then Ef = X \\Jf= y(V„ \ E„) is the required set. In fact, if c 6 A(f, Ef, x),

then for each U„ containing c, and each open neighborhood, N, of x, N C\ V
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must have positive measure. Since p(Ef \E) = 0, V„C\ N n E also must have

positive measure. It follows that ce,4(/,£,x).

The discontinuous functions we shall allow are those in the class T(p, S) of

feÜ such that every point in S is of type I or II with respect to / and Ef. Since

every point in C(p) is of type II with respect to a continuous function T(p,S)

contains all the continuous functions if S ^ C(p).

Theorem 2.3 has some special consequences when the functions in F are con-

tinuous. Note that any point of continuity of/' —/ is of the same type with

respect to /and/'.

Lemma 2.5. Suppose p* is continuous at x, and p* = gf a.e., where g is real

and \g\ < 1. Then if x is of type I or type II0 with respect to f and Ef, and has

no neighborhood of measure zero, then p*(x) = 0.

Proof. Let E be the subset of Ef on which p* = gf. Since p(Ef \ E) = 0,

A(f,E,x) = A(f,Ef,x). If p*(x) / 0, then for any sequence, {x„}, in E converging

to x such that lim f(x„) = c, c # 0 and sgnc = lim sgn f(x„) = lim ± sgnp*(x„)

= ± sgnp*(x). Therefore, x cannot be of type I.

Suppose x is of type II0. Then we can find a sequence, {x„}, in E such that

limx„ = x and lim /(x„) = 0. But since | p*(x„) | :£ |/(x„) |, p*(x) = limp*(x„) = 0.

Lemma 2.6. Suppose p* = gf a.e., where g is real and |g| < 1. Let U be an

open connected set on which p* is continuous and such that

(2.13) U contains only points of type II with respect to f and Ef,

(2.14) p* does not vanish on U,

(2.15) no nonempty open subset of U has measure zero.

Then either sgn / = sgnp* or sgn / = — sgnp* a.e. on U.

Proof. It is enough to show that sgn / is equal almost everywhere on U to a

continuous function, a, for then a/sgn p* must be 1 or — 1 everywhere on U.

Let E be the subset of Ef where p*(x) = g(x)f(x). For each xeU, choose

a z(x) 6 Aif,E,x) distinct from oo. The existence of such a z(x) is implied by

(2.10). Put ot(x) = sgn z(x).

If xeU, ce Aif, E, x), c # oo, then there is a sequence, {x„}, in E n U such that

lim x„ = x and lim f(x„) = c, which cannot be 0 by (2.13), (2.14), (2.15) and

Lemma 2.5. Thus sgn c = lim sgn/(x„) = lim + sgn p*(x„) = + lim sgn p*(x„)

= + sgn p*(x).

Moreover, if x e E n U, fix) e Aif E, x). Thus A(f, E, x) is an interval, all of

whose points have sign ± p*(x), which does not contain 0, but which does contain

f(x). That is, on E t~\ U, a(x) must equal sgn/(x).

Since a is bounded, discontinuity of a at x would imply the existence of two

sequences, {xj and {yn} in U, converging to x, such that lima(x„) and lima(y„)

exist, but are unequal. Because p(U \E) = 0, there must be, by the very definition

of a, v„ and u„ in E n U such that | un — x„ |, \vn — y„ |, | sgn/(«„) — a(x„) |, and
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|sgn/(y„) — tx(yn)\ axe all less than 1/n. Sgn/(u„) and sgn/(i;„) must also have

unequal limits, which must be ± sgnp*(x). By (2.10), there are s and í in

A(f,E,x) = A(f,Ef,x) such that sgn s = sgn p*(x) and sgni = — sgnp*(x).

But then the interval A(f,E,x) must contain 0, which contradicts either (2.14)

or Lemma 2.5.    Q.E.D.

Remark. Lemmas 2.5 and 2.6 do not depend upon the particular form of E¡,

but only on the two properties (a) p(X \Ef) = 0 and (b) E s Ef, p(Ef \E) = 0

=> A(f, E, x) = A(f, Ef,x).
Finally, let us remark that in the present context, an atom is essentially a point

of positive mass. As a topological subspace of X, an atom, A, is itself a separable

metric space, ¿pso facto having a countable base for its topology. The restriction

of p to A consequently has a carrier, C. If C contained two distinct points, x and

y, then there would be disjoint neighborhoods, U and V, of x and y in A. Both

would have positive measure. This would contradict the fact that A is an atom.

Thus C is a single point, and A is essentially C.

2.3. An interval of the real line is disconnected by the removal of a single

interior point. In view of this fact, Lemma 2.6 suggests that when X is an interval,

an important rôle in the uniquenesss problem will be played by a condition limiting

the numbers of zeros of functions in V. If V has dimension n,E^X, and no nonzero

function in V vanishes more than n — 1 times in E, we say that F is a Cebysev

space over E. For example, the polynomials of degree S: n — 1 form a Cebysev

space over any subset of the complex plane containing n or more points.

We shall need the following fact (cf. Krerh [9]) about Cebysev spaces.

Lemma 2.7. Let V be a (Cebysev space of real-valued continuous functions

on [a,b], of dimension n. If Xy,---,xk, k < n, are distinct points interior to [a,b],

there exists a nonzero peV which changes sign at Xy,---,xk, but at no other

point in [a,b].

Jackson [6] proved that if X is a compact interval of the real line, p is Lebesgue

measure, l,x,.-.,x"_1span V, and/ is real and continuous, then/ has a unique

best approximation out of V. Historically this result has stimulated much of the

research on L1 approximation.

Jackson's theorem was extended by KreTn [10] to the case when F is any n-

dimensional Cebysev subspace of LR(X,p)(p is still Lebesgue measure) over the

compact real interval, X, and all functions involved are continuous. The theorem

which follows is, to our knowledge, the first extension of these results to the

case of complex-valued functions. Results similiar to the real case of our theorem

were given by Havinson [5], but with some errors.

Observe that the behavior of p and / on any set where all the functions in F

vanish cannot affect the uniqueness of best approximations to / out of V. If Fis

a finite-dimensional subspace of Ü(X,p), Z{V) is measurable. Let pv be the
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measure defined by pv(G) = p(G O R(V)). If G is a subset of X, we denote the

closure of G relative to X by "G\"

Condition J(G): V is a subspace of L'(X,p) such that:

(2.16) V is an n-dimensional Cebysev space over G (n^. 1),

(2.17) G S C(pv) S G,
(2.18) the functions in V are continuous on G.

If, in addition,

(2.19) peF=>Re peV,

(2.20) G \Z(V) is atom-free,

we say that V satisfies condition J'(G).

We say that J(G) (respectively J'(G)) guarantees uniqueness for a class, <€, of

functions in L1 if each fe^ has a unique best approximation out of each F

satisfying J(G) (respectively J'(G)).

Theorem 2.8. Let X be a (finite or infinite) real interval, p a a-finite measure

on X.

(a) Let G = G be a disconnected subset of X, and let there be at least one V

satisfying J(G). Then J(G) guarantees uniqueness for the functions in L1 which

are continuous on G if, and only if, G consists of n points of positive mass.

If p(X) < oo or there is a V consisting of functions continuous on all of X

which satisfies J(G), the same condition is necessary and sufficient for J(G)

to guarantee uniqueness for the functions in LL which are continuous on all of X.

(b) If G is a nonempty open subinterval of X, then J'(G) guarantees uniqueness

for T(p, G).

Proof, (a) If G consists of n points of positive mass, then since V is n-dimen-

sional, the unique best approximation to / out of V is the unique peV which

is equal to/ on G.

Conversely, let G be a relatively closed disconnected subset of X, and let F

satisfy J(G).

Case l. G is a finite set. Then since G = C(pv), each point in G must be a point

of positive mass for pv. By Theorem 2.2(a), G must contain at least n points.

Suppose it contains more than n.

Let x be one of them. Put E = G\ {x}, F = {x}. Then the hypotheses of Theorem

2.2(b) are satisfied if we take the space X ofthat theorem to be G, and the measure

p of that theorem to be the restriction of pv to G. In fact, (2.5) is verified because

no nonzero peV can vanish on n points, and (2.6) is verified because if x were

in Z(V), it could not be an isolated point of C(pv).

Case 2. G is infinite. Then G is a union of two disjoint sets, closed relative

to X, at least one of which, say "£," must be infinite. Call the other "F." We are

once more in the situation of the preceding paragraph, and again can apply

Theorem 2.2(b).



112 B. R. KRIPKE AND T. J. RIVLIN [July

In either case, we find a function, /, continuous on G, which has more than

one best approximation out of a space F°, satisfying J(G).

If the functions in V are continuous on all of X, there is no need to restrict

the application of Theorem 2.2(b) to G—we can apply it to all of X, and find that

/ is continuous on X.

If p(X) < oo and g is the characteristic function of G (g = 1 on G, g = 0 on

X \G), then ge~x , xge~x ,---,x"~1ge~x is a basis for a space, F, of bounded

functions satisfying J(G). The function, /, which we construct on G can then be

extended, by the Tietze extension theorem (Kelley [8, p. 242]) to a bounded

continuous function on all of X. The extension off lies in L1 because p(X) < oo.

In either case, we have a function continuous on all of X with more than one

best approximation out of a space, Va, satisfying J(G).

(b) Now suppose that G is a nonempty open subinterval of X, and that F

satisfies J'(G). Suppose also that there were an /' e T(p, G) possessing more than

one best approximation out of V. Theorem 2.3 then asserts that there are an

feT(p,G) and a nonzero p*eV such that sgn/ = sgn(/ — Xp*) when — lgA^l.

The sets F(X) = G r\ Z(Re(f - Xp*)) intersect, for distinct X e[ - 1,1], only

in points where / = p* = 0. Thus, since p is er-finite, uncountably many of them

can have positive mass only if Re / = Re p* = 0 on a subset of G of measure

greater than zero. By (2.19), (2.16), and (2.20), that would imply that Rep* is

identically 0.

A similar argument holds for Imp*. Since p* # 0, we can choose a nonzero

Xe[ — 1, 1] such that one or the other of G C\ Z(Re(f - Xp*)) and

G C\Z(lm(f — Xp*)) has measure zero. C(pv) C\ G (~\ Z(f — Xp*) is contained

in both of these sets. (2.17), (2.20) and the definition of pv thus imply that

Py(Z(f - Xp*)) = 0.
Xp* is a best approximation to / with respect to pv as well as with respect to p.

We can use Corollary 1.5 and Theorem 2.3 to conclude that for every peV,

0 = JxPsgn(/-Ap*) dpv= $xpsgn(f - Xp*) dp = (p,sgnf). In particular, if

p is real, (p, Re sgn /) = Re (p, sgn /) = 0 = Im (p, sgn /) = (p, Im sgn /).

Lemma 2.5 shows that there can be at most n — 1 points in G of type I with

respect to/and Ef, say Xy,---,xk. The remaining points are all of type II with

repect to / and Ef.

One or the other of Rep* and Imp* must not vanish identically on G—the

former, let us say. Since Rep* must vanish along with p* at Xy,---,xk, (2.16)

implies that there are at most n — k — 1 other points, say xk+i,---,xs, at which

Rep* = 0. Let Uy,---,US+1 be the intervals which make up G y^,-,^}. Then

on each U¡, f and p* satisfy the hypotheses of Lemma 2.6. We conclude that

either sgn/ = sgnp* or sgn/ = — sgnp* a.e.on each £/,. Since Rep* does not

vanish on any U¡, on each of these intervals sgn Re/ = ± sgn Rep* is a constant.

Lemma 2.7 allows us to choose a p0 e V which has the same sign as Re/ on each

U¡. Therefore, (p0, Re sgn/) > 0, which is a contradiction.   Q. E. D.
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Remark. If Im/ = 0 on G, then Imp* = 0 on X for any best approximation,

p*, in V to /. If this were not so, it is easy to see that Rep* would be a better

approximation out of F to/ than p*. We have not proved, however, that Rep*

is always a best approximation in F to Re /.

Our proof of Theorem 2.8 also establishes the following characterization of the

extremals, which we shall need in §3.

Theorem 2.9. Let X be a real interval, G an open subinterval of X, p a o-

finite measure on X. Let f be a real-valued function in L1 which is continuous

on G. Let V be a subspace of L1 satisfying J' (G), and p* a best approxima-

tion to f out of V. Then f — p* is real on G, and changes sign at least n times

in G unless p(G n Z(f - p*)) > 0.

Walsh and Motzkin [17] have proved Theorem 2.8(b) in the real case under

far more restrictive conditions. Not only does their method lead to an extremely

simple proof of Jackson's Theorem, but it also gives a more detailed characteri-

zation of the extremals than that above in the case that p(G n Z(f — p*)) > 0.

2.4. Our next result generalizes a theorem due to Havinson [5].

Theorem 2.10. Let X be a metric space, and p a a-finite measure on X which

assigns positive mass to each nonempty open set. Let V be a subspace of Ll(X,p)

such that if p, p' eV, p' # 0,

(2.21) p is continuous except on a set S(p) of measure zero.

(2.22) X \(S(p) uS(p') UZ(p')) is nonempty and connected.

Then eachfeT(p,X) has at most one best approximation out of V.

Proof. Suppose there were an f'eT(p,X) having two best approximations

in V. Then by Theorem 2.3, there are an/eL1, a real g with |g\ < 1, a pe V, and

a nonzero p*eV such that :

ia)feTip,X\Sip)),
(b) ± p* and 0 are best approximations in V to /,

(c) sgn/ = sgn(/ ± p*) a.e.,

(d) p* = gf a.e.
D = X \(S(p) US(p*) uZ(p*)) is nonempty and connected, and by Lemma

2.5, all the points of D are of type II with respect to /. D is an open subspace

of Y = X\ 'Sip) U Sip*)). Since p(Y \Y) = 0, Aif E n Ef, x) = A(J, Ef, x)
whenever p(T\E) = 0. Applying Lemma 2.6 to Y and D, we conclude that

sgn/ = sgnp* or sgn/ = — sgnp* throughout D; the former, let us say.

Then a.e. on D, \f - p* | = (/ - p*) sgn (/ - p*) = \f \ - \ p* |, by (c). In view

of(b),

I/HI/-P*|| =   f \f-P*\dp = \ \f~P*\dp + ¡       \f\dp
J DuZ(p') JD JZ(p')

= f (|/|-|p*|)d/»+   f      |/|dp=||/||-   \\p*\dp.
JD J Z(p*) JD
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This shows that p* = 0 a.e., a contradiction which proves the theorem.

We now state several corollaries of the preceding theorem. The first is a

strengthening of Theorem 2.8 in the case that n = 1.

Corollary 2.11. When n = 1, Theorem 2.8 (b) remains valid if we require

only that V satisfy condition J(G). (2.19) and (2.20) can be omitted.

Corollary 2.12. Let X be a simple closed curve, and V a two dimensional

Cebysev subspace of L1 over X, consisting of continuous functions. If p is a

a-finite measure on X which assigns positive mass to each nonempty open set,

then eachfe T(p,X) has a unique best approximation out of V.

The next corollary extends a result of Havinson [5]. There is an error, however,

in Havinson's proof: he applies to meromorphic functions a theorem (number 5)

in which it is assumed that the approximators have no discontinuities. The error

can be corrected by some slight alterations. We call a function on a complex

manifold "meromorphic" if it is, at least locally, a quotient of holomorphic

functions (with the denominator not identically zero).

Corollary 2.13. Let X be a connected complex manifold of dimension n 2:1,

and p a a-finite measure on X which assigns positive mass to each nonempty

open set. If V is a subspace of L1(X,p) consisting of meromorphic functions,

eachfe T(p,X) has at most one best approximation out ofV.

Proof. It is clear that the set of singularities, S(p), of a meromorphic peL1 must

have measure 0. If p,p'e V, and p' is not identically 0, then M = S(p)US(p')UZ(p')

is an analytic variety in X of complex dimension n — 1. We have to show that

X \M is connected.

Each point xeX has a neighborhood, Ux such that UX\M is connected

(Bochner and Martin [2, p. 196, Lemma 5]). If x0, xxeX \M, we can join them

by an arc in Y:x = x(i),x(0) = xo,x(l) = x1. Choose points 0 = r0<rx<• • • <ift = 1

in [0,1] such that x([r¡, í;+1]) is contained in one of these neighborhoods, say

U¡, for i =0,"-,fc — 1. Clearly, (U¡C\ Ui+X) \M is nonempty for each i, since

x(/i+1)e t/,n Ui + 1, and M has complex dimension n — 1. It follows that

(l/0 \M) U ■•■ U(fJt_ y \M) is a connected subset of X \M containing x0 and Xy.

2.5. We conclude this section with some counterexamples whose purpose is to

show that certain of the hypotheses of Theorem 2.8 cannot be weakened.

Although condition (2.19) had an obvious utility in our proof, one might hope

that it were not actually needed to extend Jackson's theorem to the complex case,

especially in view of what we have shown in Corollary 2.11. However, even when

n = 2, uniqueness may fail if V is not spanned by its real-valued functions.

Nevertheless, it is natural to ask whether uniqueness might not at least obtain

in the following setting: X is an arc in the complex plane, p is a well-behaved

measure on X, V is the Cebysev space of polynomials of degree less than n, and/
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is analytic on a neighborhood of X. Again, in general, the answer is no, and this

is all the more remarkable in view of the fact that certain special geometries

do guarantee uniqueness. For example, if Y is a line segment, uniqueness is a

consequence of Theorem 2.8(b) and the fact that on X the real part of a polynomial

is again a polynomial. Approximation is also unique in this context when X is an

arc of a circle (Havinson [5, Theorem 11]).

A single example will establish the possibility of nonuniqueness in both of the

preceding situations.

Example 2.14. There are an analytic arc, X, in the complex plane, and a

function, /, analytic in a neighborhood of X which has infinitely many best ap-

proximations by linear polynomials on X. The measure, p, is a continuous

multiple of the arc length, ds:p(E) =  fEg(s) ds, where g is continuous on X.

We take X to be the arc described by z(t) = te1'2, - yj(2n) g t ^ yj(2n). It is

clear that z(t) is analytic and one-to-one on [ — yj(2n), x/(27i)]. Moreover,

z'(t) = e" (1 + 2t2i) never vanishes on this interval.

Lemma. z(t) is one-to-one on a neighborhood, U, of [ — ^j(2n), y](2n)~\ in the

complex plane.

Proof. (This argument can be formulated for compact metric spaces in general.)

Let M be a compact neighborhood of [ — y/(2n), ^(271)] = S. Because z' j= 0

on S, there is an e > 0 such that seS, | x — s | < e, | >? — s J <s, and z(x) = z(y)

imply that x = y. Moreover, z(t) is a homeomorphism on S, so there is a ö > 0

such that if s, t e S and | z(s) — z(t) | < ö, then | s — t| < e/2.

Choose n > 0 so that x, y e M, | x - y | < n => I z(x) - z(y) | < «5/2. Let U be

the set of points in M whose distance from S is less than a = min (n, e/2). If x, y e U

and z(x) = z(y), then there are s and t in S such that | x — s | and | y — 11 are less

than a. Therefore, | z(s) - z(t) | ^ | z(s) - z(x) \ + \ z(y) - z(t) | ^ Ô/2 + Ö/2 = Ö.

It follows that |s — i|< e/2, whence |x —s|<e/2<e and |y —s|<|y —/| + |i —s|<e.

By our choice of s, x = y.     Q. E. D.

If IF = z(U), there is a one-to-one analytic function t(z) on W, such that

z = í(z)eí[,(z)]í Put/(z) = eiC,(z)]2on IF, so that on [- ^(2n),^(2n)],f(z(t)) = eil2

and sgnf(z(ij) = e-u2. We set piE)= J.~u>|»| dt = jj/(z)|(1 +A[_(t(z)f)~l!2ds.

Thus J\fzsgn/(z)dp = ¡tl%2\} te"2e i%2 \t\ dt = 0, because i|f) is an odd func-

tion,   and   similarly   Jx sgn/(z) dp = 0.

This shows that sgn/ is orthogonal to the space F of linear polynomials, so that

0 is a best approximation to / out of V. But a routine calculation shows that

||/|| = |/ - az || whenever - 1/V(2tt) g a á 1/ v/(2n).

We next investigate the condition, (2.20), that G\Z(V) contain no atoms,

which also is unnecessary when n = 1. Havinson [5] actually omits this stipu-

lation—erroneously, as we shall see.

Example 2.15. Let X and p be as in Theorem 2.8, with p(X)< oo, and suppose

there is a point, c, interior to C(p) whose mass is positive. Let G Ç C(p) be an
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open interval containing c. Then there are py and p2eL1(Y,p) which span a

subspace, V, satisfying conditions JiG) and (2.19), and a real-valued continuous

f eL1 which has infinitely many best approximations out of V.

Say that G = ]**, s[. We define a function pia,b;x) by setting p(a,*;x) = e"(i_c)

on [r,c], pia,b;x) = é~Hx~c) on \_c,s~], and p(a,b;x) = 0 on X \G. By hypoth-

esis p(\_r, c[), pQ c, s]) > 0. The Lebesgue dominated convergence theorem

guarantees that we can choose a so large, and then * so large that

¡ir,c[P(a,b;x) dp < l/2p(c), J"]f>s]p(a,*;x)dp < l/2p(c), and

(2.23) p(a,b;x)(x — c) dp :§ (x — c)p(a,b;x) dp
Jïc,s\ I J lr,cl

The right-hand expression in (2.23) is a continuous monotonically decreasing

function of a, tending to zero as a increases. Therefore, by choosing a still larger

value for a if need be, we can arrange that (2.23) actually be an equality.

Having chosen a and * in this way, we now put pt(x) = p(a, b;x),p2(x)

= (x — c)py(x). It is easy to see that the subspace, V, which they span satisfies

the conditions (2.19) and J(G).

Let/(x) = | x — c\. Then

(up y + vp2)sgnfdp  = up y dpi
Ux\z(f) I J x\z(f) l

z^\u\p(c)= \upx + vp2\dp.
JZ(f)

An application of Corollary 1.4 shows that 0 is a best approximation out of F,

and another routine calculation shows that ||/| = ||/ — Xp2 || for all Xe [ — 1,1].

As a counterweight to this example, we show that even when there is an atom

interior to C(p), uniqueness may obtain for a particular V (of dimension ^ 2).

Example 2.16. Let X = [ — 1,2], and let p be Lebesgue measure, except that

p(0) = 7. Then each/eT(Y,p) has a unique best approximation by linear poly-

nomials.

In fact, if p*(x) = c + dx is a best linear approximation to an/e 7(X, p), we can

easily see that c must equal/(0) in order to avoid violating the condition (1.3).

Suppose (Theorem 2.3) that 0 and + p* ^ 0 were all best linear approximations

to /. Then we should have c = 0, d =£ 0. By Lemmas 2.5 and 2.6, sgn / must be

constant on [ — 1,0[ and on ]0,2], where it must be + sgnd # 0. By Theorem

1.3, we must have |(x,sgn/)| z% J"Z(/)jx| dp = j\o}|x| dp = 0, which is impos-

sible under the conditions we have just derived.

It is also easy to give examples of particular measures, p, and spaces F satis-

fying J(C(p)) such that each/e T(X,u) has a unique best approximation out of V,

despite the fact that C(/<) consists of dimF 4- k atoms (k > 0). Moreover, the

argument of Example 2.16 shows that if X = [ — 1,2] and p is Lebesgue measure,
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each fe T(X, p) has a unique best approximation by polynomials of the form

ex, even though such polynomials do not form a Cebysev space over the interior

of X. The condition (2.16) cannot, however, be dropped in general, as we see

by the following example:

Example 2.17. Suppose p(X) < oo and Jxp dp = 0 for every peV. There

are many non-Cebysev spaces satisfying this criterion. E.g., V might be the sub-

space of L1 ([0,2ir], dx) spanned by cosx,---.cosiix.

Under these conditions, it is immediate that each real-valued peV such that

|p(x) | ^ 1 a.e. is a best approximation out of V to the constant function, 1.

If, in the setting of Theorem 2.8(b), / is bounded and real-valued, but is not in

T(p,G), then A(f, Er,x) must be a disconnected subset of an interval for some x.

It is not hard to show, then, that/ will have more than one best approximation

out of some Cebysev space, V, of dimension 1 (Havinson [5, Theorem 10]). An

example of a similar nature shows that the condition (2.10), which Havinson

omitted, is actually necessary for Theorem 2.8(b) to be true.

Example 2.18. Let X = [ — 1,1], and let p(E) = J"E | x | dx. Let F be the space

of constant functions, and f(x) — 1 ¡x for x =£0. Then any peV such that

— l^p^lisa best approximation in V to /. Every point in X is of type II with

respect to/ and Ef = [ — 1,1] \ {0}, except that at 0 the condition (2.10) fails.

Example 2.19. Let X = [0,3], and let p be the measure which assigns mass 1

to each rational in [0,1] U [2,3] and is zero elsewhere. If pe L1 (X, p) is continuous

on C(p) = [0,1] U [2,3], then p must vanish on C(/i). This shows why we bothered

to worry in stating Theorem 2.8(a) whether or not there is any V satisfying J(G).

The condition p(X) < oo serves to eliminate the unpleasant possibility that any

fe L1 continuous on all of X would have to vanish a.e.

3. Two special cases: Approximation on a finite point set and approximation to

a real continuous function on an interval. Having seen in §2 how strongly the

presence of atoms may affect the uniqueness of best approximations, we devote

the first part of this section to a study of the extreme case in which Y is a finite

point set. We could give our discussion an appearance of greater generality by

allowing X to consist of finitely many atoms, but this would change no essen-

tial feature of the argument. In the second part of this section, we apply our

general theory to the classical problem of approximating real continuous funct-

ions on an interval.

3.1. Throughout this section, we confine ourselves to the real case. We shall

suppose that X contains JV points, each of which is measurable and has positive

mass. Let us fix a subspace, V, of L1, land an/e L1. We propose to study the set B

of best approximations to / out of F. It is immediate that B is closed, bounded

(hence compact), convex, and since L1 has finite dimension (N), B is nonempty.

Our approach is to examine the consequences of the variational lemma (Theorem

1.3) in the present situation.
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Suppose that p0 6 B, so that for each peV, (1.3) holds. Suppose also that

(1.4) does not hold for every peV. That is,

(3-1) |(P,sgn(/-p0)l = \p\ dp
JZ(.f-po)

for some pe V. For otherwise B = {p0} according to Corollary 1.4.

As a compact convex set in L1, B is the closed convex hull of its extreme points

(the KreTn-Milman Theorem; cf. Dunford and Schwartz [4, p. 440]). Our principal

results are summarized as follows :

Theorem 3.1. Let E be the set of extreme points of B. Each qeE takes the

same values as f on a nonempty subset of X, but no two distinct functions in E

agree with f on the same subset of X.

If qw'ilm are distinct functions in E, and T is defined by

(3.2) T = {ryqy + - + rmqm:rk>0, k = l,--,m; r. + ••• + rm = 1}

then any two functions in T agree with f on the same subset of X, but for each

k = l,---,m and qeT, there is an xeX such that qix) #/(x) = qk(x).

When (3.1) holds for a nonzero peV, B(~\ {p0 + tp: — co < t < oo} is a non-

trivial interval. If

(3.3) f \p\dp = 0
Jz(f-po)

then p0 is in the interior of this interval; othervise p0 is an endpoint of this interval.

Remark 1. Since, by the theorem, E is a finite set, B is actually the convex

hull of E, because the latter is closed.

Remark 2. In the present case, (1.4) is also a necessary condition for

¡/ - Po || < ||/ - (Po + tp) || for all real t # 0.

Proof. We begin with the statements of the final paragraph. If |r| is small

enough, then/— p0 — tp has the same sign as/— p0 on the set R(f — p0) where

/ — p0 # 0. This is a consequence of our assumption that X, and hence R(f — p0),

is finite. Thus for | i| sufficiently small,

l|/-Po-ip|| -|/-Po|| =|<| | \p\ dp
JZ(f-po)

(3.4)
+ [if -Po- tp) - (/ - Po)]sgn(/ - Po)dp

JR(f-po)

= |í| |p|o7¿-í       psgn(/-p0) dp.
JZ(f-po) JX

The case when (3.3) holds is now immediate.
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Suppose

(3.5) f |p|^>0.
Jz(f-po)

Then if t ^ 0, the last expression in (3.4) is either 0, or is 2111 Jz(/-Poi \p\ dp > 0

depending on the signs of (p,sgn(/ — p0)) and t. This proves our final statements.

They are used to prove the rest of the Theorem.

The set where p0 agrees with / is Z(f — p0). If p0 e E, then p0 is, by definition,

contained in the interior of no segment in B. Therefore, for each peV, either

(1.4) or (3.5) must hold. In neither case can Z(f — p0) be empty.

However, if p0 is interior to a line segment Bn {p0+ tp}, (3.3) must hold.

It follows that p vanishes on Z(f — p0) and hence Z(f — p0) s Z(f — p0 — tp),

for all f.

Let qy,---,qm be distinct functions in E, and let T be defined by (3.2). If u,

veT, then both are interior to B n {u + t(v — «)}. Thus Z(f — u) £ Z(f — v);

and similarly Z(f — v) çz Z(f — u). In other words, u and v agree with / on the

same subset of X. Since qk is an extreme point, it must be an endpoint of the

segment B r\{qk + t(q — qk)} for a given qeT. Thus (3.5) applies, so that there

is an x eR(q — qk)nZ(f — qk). We then have f(x) = qk(x) =£ q(x).

If we apply this last result in the case m = 2, we find that the assumption that

Z(f — qf) = Z(f— q2) leads to a contradiction: Z(f — q)^ Z(f — qf) = Z(f — q2)
for each qeT. Thus qx and q2 do not agree with/ on the same set.

The following result of Motzkin and Walsh [12] is a corollary of what we have

just proved :

Theorem 3.2. // F has dimension n, then each extreme function of B agrees

withf on at least n points of X.

Proof. We first note that for any n — 1 points xlt •••,xB_1 eX, there is a non-

zero peV which vanishes on xx,---,x„_x. Suppose this were false. Then

p(xy) = ■•• = p(xn_y) = 0 implies that p = 0. Therefore, the restriction map of

V into L1({xy,---,xn-y},p) would be a linear isomorphism, which is impossible,

because the dimension of L1({x1,---,xn_1},p) is only n — 1.

Now if the theorem were false, there would be a set S S Y of, at most, n — 1

points, and an extreme function p0eB agreeing with / exactly on S. Then if we

choose a nonzero peV which vanishes on S, we have

\p\ dp=    \p\ dp = 0.
JZ(f-P0) JS

But then (3.3) is satisfied, and p0 is not an extreme point. The theorem is proved.

When n = N — 1, this last result can be refined by a combinatorial argument.

Theorem 3.3. // V has dimension n = N — l, qy,---,qm are distinct extreme
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points of B, and T is defined by (3.2), then if f$ V, each qeT agrees with f

just on the n — m + 1 points at which f(x) = qy(x) = ••■ = q„,(x).

Proof. By Theorem 3.2, each qk agrees with/ on at least n points. Since f£ V,

there is then exactly one point, xkeX, at which qk(xk) =£f(xk). By Theorem 3.1,

the points xx,---,xm are distinct. On the remaining n + 1 — m points of X, each

of qlt ■■-, qm, and hence each qeT, agrees with / For qeT we have

q(xk) = ryqy(xk) + - + rmqm(xk) = (1 - rk)f(xk) + rkqk(xk) #/(xt).

Remark 1. Every qeB which agrees with/ on a set of n points is an extreme

oint of B. B can thus be determined by examining the elements of V which agree

with/ at n points, since every extreme point of B is to be found among them.

Remark 2. Suppose f$ V. Let p0 be an extreme best approximation to / out

of V, agreeing with / at x.,---,x„. Then for any g$V, a best approximation

to g out of V can be found by choosing the unique peV which agrees with g on

Xj, ••-,xn.

In fact, g can be represented uniquely as g = q + af, q e V. Then q + ap0 is a

best approximation to g out of V which interpolates g on Xy,---,x„. No other

p e F can agree with g on these points, for if there were another, there would be

a nonzero p'eV which vanished on xt, ■■-,x„ = Z(/ — p0), so that p0 would

not be extreme.

3.2. We conclude with a brief survey of some of the classical properties of L1-

approximation in the following setting: C(u) is a nontrivial atom-free real interval,

/ is real and continuous on C(p), and V is an n-dimensional Cebysev space over

the interior of C(p) consisting of real continuous functions. It is a remarkable

feature of this situation that in some cases we can determine a canonical set of n

points interior to C(p) so that the function of best approximation out of F is the

one which interpolates / at these points. We shall give special attention to the

case in which p is Lebesgue measure and Fconsists of ordinary polynomials. In

this case, the canonical nodes can be determined explicitly.

Following Laasonen [11], we shall say that the function/£ Fis adjoined to the

Cebysev space F over the set E if the linear span of V and/ is also a Cebysev space

over E. For example, if E is an interval and / has a continuous nonvanishing

nth derivative on E, then n applications of Rolle's Theorem show that / is ad-

joined to the space of polynomials of degree < n. In particular, x" is adjoined

to this space.

Theorem 3.4. Let X be a nontrivial real interval, p an atom-free, a-finite

measure on X which assigns positive mass to each nonempty open set. Let V

be an n-dimensional Cebysev subspace of LR(X,p) over the interior of X con-

sisting of continuous functions, and let geL-(X,p) be continuous and adjoined

to V. Let Po be the (unique) best approximation to g out of V. Then g — p0 changes

sign at exactly n distinct points, xx,---,x„, interior to X. Suppose feLR(X,p)
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is continuous and p* is its (unique) best approximation out of V. Then iff — p*

changes sign at most n times in X and vanishes only on a set of measure zero,

f — p* changes sign exactly at the points xi,---,x„. (This is true in particular

iff is adjoined to V.)

Proof, g — Po vanishes at most n tines in the interior of X because g is ad-

joined to V, and changes sign at least n times by Theorem 2.9. The uniqueness

is guaranteed by Theorem 2.8.

By the same reasoning,/— p* must change sign at exactly n points, yx,•••,y„.

Lemma 2.7 assures us of the existence of a function q + Bg, qeV, which changes

sign just at yu •••, y„. B cannot be zero, because V is a Cebysev space of dimension

n. Thus, there is a p'eV such that g — p' changes sign just at y{, ■■■,}'„■ As a

result, sgn(g - p') = sgn(/ - p*) or sgn(g — p') = — sgn(/ — p*) a.e. on X.

By Corollary 1.5, (p,sgn(/- p*)) = + (p,sgn(g - p')) = 0 for all peV; which

implies, by the same Corollary, that p' is a best approximation to g out of V. By

uniqueness, p' = p0 and yk = xk, k= Y,—,n.

Theorem 3.4 is essentially proved in Achieser [1], although it is not stated

explicitly. Laasonen [11] states and proves essentially the same theorem we have

proved. Kréín [9] also gives Theorem 3.4 and some' generalizations of it to

situations we are not considering here.

We see from Theorem 3.4 that if/ satisfies the conditions of that theorem, its

best approximation with respect to Lebesgue measure by polynomials of degree

< n is the polynomial which interpolates it at certain canonical points. By com-

puting the best approximation to x", these points can be determined: they are

the points — cos(kn)/(n + 1), k = 1, •••,« (cf. Achieser [1], Krëïn [9]). There are

similar results for trigonometric polynomials. On the interval [0,2n[, any f(x)

satisfying the conditions of Theorem 3.4 with respect to the space of trigono-

metric polynomials of degree ^ n has as its best approximation the polynomial

a0 +axcosx + b2sinx + ■■■ + a„cosnx + b„sinnx which interpolates it at the

points jnl(n + T),j= l,---,(2n + 1).
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