Quasi-convexity and lower semi-continuity of multiple variational integrals of any order
Author:
Norman G. Meyers
Journal:
Trans. Amer. Math. Soc. 119 (1965), 125-149
MSC:
Primary 49.00
DOI:
https://doi.org/10.1090/S0002-9947-1965-0188838-3
MathSciNet review:
0188838
Full-text PDF Free Access
References | Similar Articles | Additional Information
- S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions. I, Comm. Pure Appl. Math. 12 (1959), 623–727. MR 125307, DOI https://doi.org/10.1002/cpa.3160120405
- Norman G. Meyers and James Serrin, $H=W$, Proc. Nat. Acad. Sci. U.S.A. 51 (1964), 1055–1056. MR 164252, DOI https://doi.org/10.1073/pnas.51.6.1055
- Charles B. Morrey Jr., Quasi-convexity and the lower semicontinuity of multiple integrals, Pacific J. Math. 2 (1952), 25–53. MR 54865
- Charles B. Morrey Jr., Multiple integral problems in the calculus of variations and related topics, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 14 (1960), 1–61. MR 115117
- Léon Van Hove, Sur l’extension de la condition de Legendre du calcul des variations aux intégrales multiples à plusieurs fonctions inconnues, Nederl. Akad. Wetensch., Proc. 50 (1947), 18–23=Indagationes Math. 9, 3–8 (1947) (French). MR 20223
Retrieve articles in Transactions of the American Mathematical Society with MSC: 49.00
Retrieve articles in all journals with MSC: 49.00
Additional Information
Article copyright:
© Copyright 1965
American Mathematical Society