Sign-invariant random variables and stochastic processes with sign-invariant increments
HTML articles powered by AMS MathViewer
- by Simeon M. Berman
- Trans. Amer. Math. Soc. 119 (1965), 216-243
- DOI: https://doi.org/10.1090/S0002-9947-1965-0185651-8
- PDF | Request permission
References
- Simeon M. Berman, An extension of the arc sine law, Ann. Math. Statist. 33 (1962), 681–684. MR 138123, DOI 10.1214/aoms/1177704589
- Simeon M. Berman, Oscillation of sample functions in diffusion processes, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1 (1962/63), 247–250. MR 157408, DOI 10.1007/BF00532496
- R. M. Blumenthal and R. K. Getoor, Sample functions of stochastic processes with stationary independent increments, J. Math. Mech. 10 (1961), 493–516. MR 0123362
- Robert Cogburn and Howard G. Tucker, A limit theorem for a function of the increments of a decomposable process, Trans. Amer. Math. Soc. 99 (1961), 278–284. MR 123353, DOI 10.1090/S0002-9947-1961-0123353-0
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 P. Lévy, Sur les intégrales dont les éléments sont des variables aléatoires indépendantes, Ann. Scuola Norm. Sup. Pisa 3 (1934), 337-366. —, Théorie de l’addition des variables aléatoires, Gauthier-Villars, Paris, 1937.
- Paul Lévy, Le mouvement brownien plan, Amer. J. Math. 62 (1940), 487–550 (French). MR 2734, DOI 10.2307/2371467
- Michel Loève, Probability theory, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-New York-London, 1960. 2nd ed. MR 0123342
- Hans Rademacher, Einige Sätze über Reihen von allgemeinen Orthogonalfunktionen, Math. Ann. 87 (1922), no. 1-2, 112–138 (German). MR 1512104, DOI 10.1007/BF01458040 H. Steinhaus, Les probabilités denombrables et leurs rapport à la théorie de la mesure, Fund. Math. 4 (1922), 286-310.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 119 (1965), 216-243
- MSC: Primary 60.40
- DOI: https://doi.org/10.1090/S0002-9947-1965-0185651-8
- MathSciNet review: 0185651