Invariant eigendistributions on a semisimple Lie group
HTML articles powered by AMS MathViewer
- by Harish-Chandra
- Trans. Amer. Math. Soc. 119 (1965), 457-508
- DOI: https://doi.org/10.1090/S0002-9947-1965-0180631-0
- PDF | Request permission
References
- Armand Borel, Groupes linéaires algébriques, Ann. of Math. (2) 64 (1956), 20–82 (French). MR 93006, DOI 10.2307/1969949
- A. Borel and G. D. Mostow, On semi-simple automorphisms of Lie algebras, Ann. of Math. (2) 61 (1955), 389–405. MR 68531, DOI 10.2307/1969807
- N. Bourbaki, Éléments de mathématique. XXVI. Groupes et algèbres de Lie. Chapitre 1: Algèbres de Lie, Actualités Sci. Indust., No. 1285, Hermann, Paris, 1960 (French). MR 0132805
- Harish-Chandra, On representations of Lie algebras, Ann. of Math. (2) 50 (1949), 900–915. MR 30945, DOI 10.2307/1969586
- Harish-Chandra, Representations of a semisimple Lie group on a Banach space. I, Trans. Amer. Math. Soc. 75 (1953), 185–243. MR 56610, DOI 10.1090/S0002-9947-1953-0056610-2
- Harish-Chandra, The Plancherel formula for complex semisimple Lie groups, Trans. Amer. Math. Soc. 76 (1954), 485–528. MR 63376, DOI 10.1090/S0002-9947-1954-0063376-X
- Harish-Chandra, Representations of semisimple Lie groups. VI. Integrable and square-integrable representations, Amer. J. Math. 78 (1956), 564–628. MR 82056, DOI 10.2307/2372674
- Harish-Chandra, The characters of semisimple Lie groups, Trans. Amer. Math. Soc. 83 (1956), 98–163. MR 80875, DOI 10.1090/S0002-9947-1956-0080875-7
- Harish-Chandra, Differential operators on a semisimple Lie algebra, Amer. J. Math. 79 (1957), 87–120. MR 84104, DOI 10.2307/2372387
- Harish-Chandra, Fourier transforms on a semisimple Lie algebra. I, Amer. J. Math. 79 (1957), 193–257. MR 87044, DOI 10.2307/2372680
- Harish-Chandra, Fourier transforms on a semisimple Lie algebra. II, Amer. J. Math. 79 (1957), 653–686. MR 95898, DOI 10.2307/2372569
- Harish-Chandra, A formula for semisimple Lie groups, Amer. J. Math. 79 (1957), 733–760. MR 96138, DOI 10.2307/2372432
- Harish-Chandra, Spherical functions on a semisimple Lie group. I, Amer. J. Math. 80 (1958), 241–310. MR 94407, DOI 10.2307/2372786
- Harish-Chandra, Invariant eigendistributions on semisimple Lie groups, Bull. Amer. Math. Soc. 69 (1963), 117–123. MR 145006, DOI 10.1090/S0002-9904-1963-10889-7
- Harish-Chandra, Invariant distributions on Lie algebras, Amer. J. Math. 86 (1964), 271–309. MR 161940, DOI 10.2307/2373165
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023
- Harish-Chandra, Invariant differential operators and distributions on a semisimple Lie algebra, Amer. J. Math. 86 (1964), 534–564. MR 180628, DOI 10.2307/2373023 (n) —, Invariant eigendistributions on a semisimple Lie algebra, Inst. Hautes Études Sci. Publ. Math. No. 27.
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- C. B. Morrey Jr. and L. Nirenberg, On the analyticity of the solutions of linear elliptic systems of partial differential equations, Comm. Pure Appl. Math. 10 (1957), 271–290. MR 89334, DOI 10.1002/cpa.3160100204
- L. Schwartz, Théorie des distributions. Tome I, Publ. Inst. Math. Univ. Strasbourg, vol. 9, Hermann & Cie, Paris, 1950 (French). MR 0035918 H. Weyl, The structure and representation of continuous groups, The Institute for Advanced Study, Princeton, N. J., 1935.
Bibliographic Information
- © Copyright 1965 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 119 (1965), 457-508
- MSC: Primary 22.60
- DOI: https://doi.org/10.1090/S0002-9947-1965-0180631-0
- MathSciNet review: 0180631