A semiprime ring may be defined as a ring in which every nonzero right ideal A is potent, that is, $A^n \neq 0$ for all $n > 0$. Evidently one can weaken the condition of semiprimeness by assuming only that some class of right ideals is potent. A natural choice for such a class is the class of all nonzero closed right ideals. A right ideal of a ring R is called closed if it has no essential extension in the lattice L_r of right ideals of R. We call ring R (right) potent iff every nonzero closed right ideal of R is potent.

The present paper is concerned with potent rings R for which the (right) singular ideal is zero and the lattice L_r^* of closed right ideals of R is atomic. Necessary and sufficient conditions are given (3.7) for a triangular block matrix ring over a field F to be potent. Such a potent ring is shown to have a full triangular block matrix ring as a classical quotient ring under certain conditions (3.6).

If R is a finite-dimensional potent irreducible ring, then the ideals of R in L_r^* form a chain $R = T_0 > T_1 > \cdots > T_k = 0$. This fact allows us to imbed a potent triangular block matrix ring S in R and, in turn, to imbed R in a full triangular block matrix ring M. If $\dim T_i - \dim T_{i+1} > 1$ in L_r^*, $i = 1, \cdots, k - 1$, then it is shown that M is a classical quotient ring of R (4.4). This generalizes Goldie's results on prime rings.

1. Atomic potent rings. If R is a ring, then L_r (or $L_r(R)$) denotes the lattice of right ideals and L_2 the lattice of 2-sided ideals of R. The notation A' is used for the right annihilator of an element or subset A of R.

If L is a lattice with 0 and 1 and $A, B \in L$, then B is called an essential extension of A iff $A \subseteq B$ and $A \cap C \neq 0$ whenever $B \cap C \neq 0$, $C \in L$. We call $A \in L$ closed iff A is the only essential extension of A and large iff I is an essential extension of A. A minimal element of $L - \{0\}$ is called an atom of L; dually, a maximal element of $L - \{1\}$ is called a coatom of L. We call lattice L atomic iff each nonzero element of L contains an atom.

The set $R_r^\Delta = \{a \in R \mid a'$ large in $L_r\}$ is an ideal of ring R called the right singular ideal. If $R_r^\Delta = 0$, then each $A \in L_r$ has a unique maximal essential extension A^*, and the set L_r^* of closed right ideals of R is a complete complemented modular lattice. If J_r^* denotes the lattice of all annihilating right ideals of R, then it is easily
POTENT RINGS

1965]

seen that $J_1^* \subseteq L_1^*$. The lattice J_1^* is not usually a sublattice of L_1^*, although intersections are set-theoretic in both lattices. For convenience, we let $L_2^* = L_1^* \cap L_2$ and $J_2^* = J_1^* \cap L_2$. Corresponding left properties of a ring R are indicated by replacing each "r" by an "l".

A ring R is called right atomic iff $R_1^* = 0$ and L_1^* is atomic. The union in L_r of all atoms of L_r^* is denoted by R_r^*. A right atomic ring R is called (right) stable in [2] iff $(R_1^*)^r = 0$. If every nonzero closed right ideal of a right atomic ring R is potent then R is called a (right) potent ring, or a P-ring. It is clear that a right atomic ring R is potent iff $A^2 \neq 0$ for every atom $A \in L_r^*$. Hence, a P-ring is also a stable ring.

If R is a right atomic ring, then atoms A and B of L_r^* are called perspective, $A \sim B$, iff they have a common complement in L_r^*. It may be shown that if $A \neq B$, then $A \sim B$ iff either $A \cup B$ contains a third atom C or $a' = b'$ for some nonzero $a \in A$ and $b \in B$ [3, p. 540]. The union in L_r^* of all atoms perspective to an atom A is an atom in the center C_r^* of L_r^*. It is known that C_r^* is a Boolean algebra and that the elements of C_r^* are ideals of R [3, p. 541]. The ring R is called (right) irreducible iff $C_r^* = \{0, R\}$. We shall call a right atomic, irreducible ring an I-ring. Clearly a right atomic ring R is an I-ring iff $A \sim B$ for all atoms $A, B \in L_r^*$. An I-ring which is also a P-ring will be called a PI-ring.

1.1. Lemma. If R is a P-ring and $A, B \in L_r^*$ then $A^* \subseteq B^*$ iff $A^* \cap B = 0$.

Proof. If $A^* \subseteq B^*$ then $A^* \cap B \subseteq (A^* \cap B)^r \subseteq (A^* \cap B)^2 = 0$, and therefore $A^* \cap B = 0$. Conversely, if $A^* \cap B = 0$ then $A^* \subseteq (AB)^r \subseteq B^*$.

It might be worth observing that the atomicity of R is not needed in 1.1.

1.2. Lemma. If R is a P-ring and $A \sim B$, where A and B are atoms of L_r^*, then either $AB \neq 0$ or $BA \neq 0$.

Proof. The lemma is obvious if $A = B$, so let us assume that $A \neq B$. Suppose that $AB = BA = 0$. Then there exists an atom $C \subseteq A \cup B$ such that $C \cap A = C \cap B = 0$. Since $A \cap A' = B \cap B' = 0$, evidently $A(a + b) \neq 0$ and $B(a + b) \neq 0$ for all nonzero $a \in A$ and $b \in B$. Hence, $AC \neq 0$ and $BC \neq 0$ in view of the fact that $C \cap (A + B) \neq 0$. Therefore, $A^r \subseteq C^r$ and $B^r \subseteq C^r$ by 1.1. We cannot have either $CA \neq 0$ or $CB \neq 0$, for then either $C' = A^r$ or $C' = B^r$ and either $A \subseteq B^r \subseteq A^r$ or $B \subseteq A^r \subseteq B^r$ contrary to assumption. Hence, $CA = CB = 0$ and $C(A \cup B) = 0$, contrary to the fact that $C^2 \neq 0$. We conclude that either $AB \neq 0$ or $BA \neq 0$ as desired.

Perhaps we should point out that if A and B are atoms of L_r^* such that $AB \neq 0$ then necessarily $A \sim B$. For if $ab \neq 0$ for some $a \in A$ and $b \in B$, then $(ab)^r = b'$ [3,6.9] and $A \sim B$ by our remarks above.

1.3. Lemma. If R is a PI-ring and $A, B \in L_r^*$ then either $A^* \cap B = 0$ or $A \cap B^* = 0$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. If \(A' \cap B \neq 0 \) and \(A \cap B' \neq 0 \), then there exist atoms \(C, D \in L_r^* \) such that \(C \subseteq A' \cap B \) and \(D \subseteq A \cap B' \). However, then \(CD = DC = 0 \) contrary to 1.2.

1.4. Theorem. If \(R \) is a PI-ring and \(S = \{A' \mid A \in L_r^* \} \), then \(S \) is a chain in \(J_r^* \). Also, \(S = \{0, R\} \) if \(R \) is a prime ring.

Proof. The first part follows from 1.1 and 1.3. If \(R \) is not prime, then \(BC = 0 \) for some nonzero \(B, C \in L_2 \). Since \(B' \in L_r^*, B' \neq R \), evidently \(A \cap C = 0 \) for some atom \(A \in L_r^* \). Clearly \(AC = 0 \) and therefore \(A' \neq 0 \). This proves 1.4.

2. Finite-dimensional rings. A ring \(R \) is said to have finite right rank iff there exists an integer \(n \) such that every independent subset of \(L_r \) has at most \(n \) elements. If \(R_r^* = 0 \), then \(R \) has finite right rank iff the lattice \(L_r^* \) is finite dimensional. The dimension of \(L_r^* \) is called the (right) rank, or dimension, of \(R \) and is denoted by \(\dim R \). A prefix of "F" used in designating a ring indicates that it is assumed to be finite dimensional. The case \(\dim R = 1 \) is uninteresting (if \(RA = 0 \), it means that \(RR^{-1} \) is a field), so we shall always tacitly assume that \(\dim R > 1 \).

2.1. Lemma. If \(R \) is an FPI-ring and \(T \in L_r^* \setminus \{R\} \), then \(T = A' \) for some atom \(A \in L_r^* \).

Proof. Clearly \(BT \subseteq B \cap T = 0 \) for some atom \(B \in L_r^* \). Let atom \(A \in L_r^* \) be chosen so that \(A' \) is a minimal element of \(\{B' \mid B \in L_r^*, B \) an atom, \(B' \supseteq T\} \). If \(T \neq A' \), there exists an atom \(C \in L_r^* \) such that \(C \cap T = 0 \) and \(C \subseteq A' \). Since \(AC = 0 \), necessarily \(CA \neq 0 \) by 1.2 and \(C' \subseteq A', C' \neq A' \), by 1.1. Since \(C' \supseteq T \), this is contrary to the choice of \(A \). Hence, \(T = A' \) as desired.

An interesting consequence of 2.1 is that \(A' = 0 \) for some atom \(A \in L_r^* \). Actually, this is true for any finite-dimensional stable ring by \([2, 2.13]\).

2.2. Theorem. If \(R \) is an FPI-ring, then \(L_r^* \setminus \{R\} \) is a finite chain \(R = T_0 > T_1 > \cdots > T_k = 0 \). If \(A \in L_r^* \setminus \{0\} \) and \(A \subseteq T_j \) then \(A' \subseteq T_{j+1} \). Conversely, if \(A \) is an atom of \(L_r^* \) and \(A' \subseteq T_{j+1} \) then \(A \subseteq T_j \).

Proof. The first part follows directly from 2.1 and 1.4. The other parts are obvious if \(j = 0 \), so let us assume that \(j > 0 \). By 2.1, there exists an atom \(B \in L_r^* \) such that \(B' = T_j \). If \(A \in L_r^* \setminus \{0\} \) and \(A \subseteq T_j \), then \(A' \cap B = 0 \) by 1.3 and \(A' \subseteq B' \), \(A' \neq B' \), by 1.1. Hence, \(A' \subseteq T_{j+1} \). Conversely, if \(A \) is an atom and \(A' \subseteq T_{j+1} \), then \(A' \subseteq B' \), \(A' \neq B' \), and \(A \cap B' \neq 0 \) by 1.1. Hence, \(A \subseteq T_j \). This proves 2.2.

2.3. Corollary. If \(0 \leq j < k \), then \(T_j \) is the union of all atoms \(A \in L_r^* \) such that \(A' \subseteq T_{j+1} \).

If \(R \) is an FPI-ring of dimension \(n \), then the lattice \(J_r^* \) (\(J_r^* \)) is shown in \([4]\) to be a complemented lower (upper) semimodular lattice in which every maximal chain has length \(n \). If \(J_r^* \) consists of \(R = T_0 > T_1 > \cdots > T_k = 0 \) as in 2.2, then
J^*_2 consists of $0 = T^I_0 < T^I_1 < \cdots < T^I_k = R$. For each atom $A \in L^*_n$, there exists an integer j, $0 \leq j < k$, such that $A \subset T_j$ and $A' = T_{j+1}$ by 2.1 and 2.2. Let us select $a \in A$ such that $a^2 \neq 0$, and define $B = a^I$, an atom of J^*_2 containing a. Clearly $B \subset T_{j+1}$ and $B \cap T^I_j = 0$. Hence, $T^I_j B = 0$ and $B' \subset T^I_j$. Since $B' \in J^*_2$ and $B' \supset T^I_{j+1}$ (for $B' \supset T^I_{j+1}$ implies $B \subset T_{j+1}$ and $a \in T_{j+1}$, contrary to the fact that $A \cap T_{j+1} = 0$), evidently $B' = T^I_j$. Clearly B is potent, and we have proved the following result.

2.4. Lemma. If R is an FPI-ring and $J^*_2 = \{T^I_0, \ldots, T^I_k\}$ as above, then for each integer j, $0 \leq j < k$, there exists a potent atom $B \in J^*_i$ such that $B \subset T^I_{j+1}$ and $B' = T^I_j$.

Assume that we have selected an independent set $\{B_1, \ldots, B_p\}$ of potent atoms of J^*_i (i.e., $B_{i+1} \cap (B_1 \cup \cdots \cup B_i) = 0$, $i = 1, \ldots, p - 1$) such that

$C \subset T^I_{j+1}$ and $C \cap T^I_j = 0$ where $C = B_1 \cup \cdots \cup B_p$.

If $C \cup T^I_j \neq T^I_{j+1}$, then $C' \cap T^I_j \neq T^I_{j+1}$ and there exists an atom $A \in L^*_n$ such that $A \subset C' \cap T^I_j$ and $A \cap T^I_{j+1} = 0$. Let $a \in A$, $a^2 \neq 0$, and $B = a^I$, an atom of J^*_i. By the proof of 2.4, B is a potent atom such that $B \subset T^I_{j+1}$ and $B \cap T^I_j = 0$. If $B \subset C \cup T^I_j$, then $B' \supset C' \cap T^I_j$ and $a^2 = 0$, contrary to assumption. Hence, $B \cap (C \cup T^I_j) = 0$. By a lattice-theoretic argument (see [4, §4]), $(B \cup C) \cap T^I_j = 0$ also. The result below now follows by induction.

2.5. Lemma. Let R be an FPI-ring and $J^*_2 = \{T^I_0, \ldots, T^I_k\}$ as above. Then for each integer j, $0 \leq j < k$, there exists an independent set $\{B_1, \ldots, B_q\}$ of potent atoms of J^*_i such that

$(B_1 \cup \cdots \cup B_q) \cup T^I_j = T^I_{j+1}$, \hspace{1cm} $(B_1 \cup \cdots \cup B_q) \cap T^I_j = 0$.

If R is an FPI-ring of dimension n and $J^*_2 = \{T_0, \ldots, T_k\}$ as above, then $\dim T^I_i$ in L^*_n equals $n - \dim T^I_i$ in J^*_i by [4]. For convenience, let

$d_i = \dim T^I_i \hspace{1cm} i = 0, \ldots, k$.

Thus, $0 = d_0 < d_1 < \cdots < d_k = n$. We shall call

$(d_1 - d_0, d_2 - d_1, \ldots, d_k - d_{k-1})$

the set of block numbers of R. By 1.4, R is prime iff (n) is its set of block numbers.

In view of 2.5, there exists an independent set $\{B_1, \ldots, B_n\}$ of potent atoms of J^*_i such that if

$C_j = B_{d_{j+1}} \cup \cdots \cup B_{d_{j+1}}$, \hspace{1cm} j = 0, \ldots, k - 1,$

then

$C_j \cup T^I_j = T^I_{j+1}$, \hspace{1cm} $C_j \cap T^I_j = 0$, \hspace{1cm} j = 0, \ldots, k - 1.$

If we define
\[A_j = \bigcup_{i=1; i \neq j}^n B_i^* j = 1, \ldots, n, \]

then \(\{A_1, \ldots, A_n\} \) is an atomic basis of \(L_*^n \) contained in \(J_*^n \), as shown in [4]. It is immediate that

\[A_j^* = \bigcup_{i=1; i \neq j}^n B_i, j = 1, \ldots, n. \]

If \(i \) and \(j \) are selected so that \(d_j < i \leq d_{j+1} \), then \(B_i \subset T_{j}^{j+1} \) and \(B_i \cap T_j^i = 0 \), so that \(B_i \nsubseteq T_{j+1}^{j+1} \) and \(B_i \subset T_j \). Since \(A_i^* \nsubseteq B_i \), clearly \(A_i \cap T_{j+1}^j = 0 \). On the other hand, \(A_i^* \nsubseteq T_j^i \) and therefore \(A_i \subset T_j \). Thus by 2.2, \(A_i^* = T_{j+1}^j \). Since \(B_p \subset T_{j+1}^j \) iff \(p > d_{j+1} \), evidently \(A_i B_p \neq 0 \) iff \(p \leq d_{j+1} \). We assemble these results below.

2.6. Theorem. Let \(R \) be an FPI-ring of dimension \(n \) with block numbers \((b_1, \ldots, b_k) \). Then there exist potent atomic bases \(\{B_1, \ldots, B_n\} \) for \(J_*^n \) and \(\{A_1, \ldots, A_n\} \) for \(L_*^n \) such that:

1. \(A_i = (\bigcup_{j \neq i} B_j)^c \) and \(B_i = (\bigcup_{j \neq i} A_j)^c \), \(i = 1, \ldots, n \).
2. \(J_*^n = \{A_i^* \mid i = 1, \ldots, n\}, J_*^n = \{B_i^* \mid i = 1, \ldots, n\} \).
3. \(A_i^* \geq A_2^* \geq \cdots \geq A_n^* = 0 \) and \(0 \neq B_1^* \geq B_2^* \geq \cdots \geq B_n^* \).
4. \(A_i^* = B_i^* \) iff \(d_0 + \cdots + d_i < i \) and \(j \leq d_0 + \cdots + d_p + 1 \) for some \(p \), where \(d_0 = 0 \).
5. \(A_i B_j \neq 0 \) iff \(i > d_0 + \cdots + d_p \) and \(d_0 + \cdots + d_p < j \leq d_0 + \cdots + d_{p+1} \) for some \(p \).

3. Triangular-block matrix rings. We shall give examples of FPI-rings in this section. To this end, let \(F \) be a (skew) field and \(F_{ij}, i, j = 1, \ldots, n \), be additive subgroups of \(F \) such that

\[F_{ij} \cap F_{jk} = F_{ik}, i, j, k = 1, \ldots, n, \]

and let

\[S = \sum_{i,j=1}^n F_{ij} e_{ij}, \]

where the \(e_{ij} \) are the usual \(n \times n \) unit matrices. Clearly \(S \) is a subring of \((F)_n \), the ring of all \(n \times n \) matrices over \(F \).

The ring \(S \) will be called a T-ring (triangular-block matrix ring) in \((F)_n \) iff there exist integers \(0 = d_0 < d_1 < \cdots < d_k = n \) such that

\[F_{ij} \neq 0 \] iff \(i > d_0 \) and \(d_p < j \leq d_{p+1} \), \(p = 0, \ldots, k - 1 \).

Associated with \(S \) is the full T-ring

\[M = \sum_{i,j=1}^n F_{ij}' e_{ij}, \text{ where } F_{ij}' = F \text{ whenever } F_{ij} \neq 0, \]

\[\text{and } F_{ij}' = 0 \text{ otherwise.} \]
It is clear that M is closed under inverses. We shall call M the full cover of S.

The T-ring S described above can be thought of as a ring of $k \times k$ matrices whose elements are rectangular matrices over F. Thus,

$$(3.4) \quad S = (S_{rs} \mid r, s = 1, \ldots, k)$$

where S_{rs} is a set of $m_r \times m_s$ matrices $(m_i = d_i - d_{i-1})$ of the form

$$(f_{ij} \mid i = d_r + 1, \ldots, d_r + 1, j = d_s + 1, \ldots, d_s + 1), \quad f_{ij} \in F_{ij}.$$

The $k \times k$ matrices of S are triangular, having zeros above the main diagonal. The full cover M of S has the form (M_{rs}), where M_{rs} is the set of all $m_r \times m_s$ matrices over F if $r \geq s$, and is zero otherwise. It is easily shown that the matrix ring S_{ii} is prime for each i.

A ring R is called a (right) quotient ring of ring S, and we write $S \leq R$, iff $S \subset R$ and $aS \cap S \neq 0$ for every nonzero $a \in R$. If ring R has a unit and $S \subset R$, then R is called a (right) classical quotient ring of S iff every regular element $b \in S$ (i.e., $b^r = b^l = 0$) has an inverse in R and $R = \{ab^{-1} \mid a, b \in S, b \text{ regular}\}$. If R is a classical quotient ring of S, we write $R = SS^{-1}$. Clearly $S \leq R$ whenever $SS^{-1} = R$. If M is a full T-ring, then $MM^{-1} = M$.

3.5. Theorem. If S is a T-ring in $(F)_n$ given by 3.2, then $S \leq (F)_n$ iff $F_{11}F_{11}^{-1} = F$.

Proof. If $B = S_{e_{11}}$, then $B^l = 0$ and therefore $B \leq S$. If $S \leq (F)_n$, then $B \leq (F)_n$ and for every nonzero $f \in F$, $(f_{e_{11}})B \cap B \neq 0$. Hence, $fF_{11} \cap F_{11} \neq 0$ and $F \in F_{11}F_{11}^{-1}$. Thus, $F_{11}F_{11}^{-1} = F$.

Conversely, if $F_{11}F_{11}^{-1} = F$ then $F_{ii}F_{jj}^{-1} = F$ for all i and j by [4, Lemma 1.1]. Let $a = \sum_{i} a_{ij}e_{ij} \in (F)_n$, where $a_{ij} \in F$ and some $a_{rs} \neq 0$. For each i, there exists some nonzero $f_i \in F_{ii}$ such that $a_{ii}f_i \in F_{ii}$. Since \(\bigcap_{i=1}^{n} F_{ii} \neq 0 \) by [4, Lemma 1.1], there exists $g_i \in F_{ii}$ for some $i = 1, \ldots, n$. Clearly $a(f_{e_{ii}}) \in S$ and $a(f_{e_{ii}}) \neq 0$. Hence, $S \leq (F)_n$.

If S is a T-ring in $(F)_n$, then necessarily $S^2 = 0$ and $L^*_n(S) \cong L^*_n((F)_n)$. Since $(F)_n$ is an FI-ring, S is also an FI-ring.

3.6. Theorem. Let S be a T-ring in $(F)_n$ given by 3.2 and M be its full cover. Then $SS^{-1} = M$ iff $F_{ii}F_{ii}^{-1} = F$, $i = 1, \ldots, n$.

Proof. If $SS^{-1} = M$ and $S = (S_{rs})$ and $M = (M_{rs})$ are represented as in 3.4, then evidently $S_{ii}S_{ii}^{-1} = M_{ii}$ for each i. Hence, $F_{ii}F_{ii}^{-1} = F$ for each i by [4, Theorem 1.2].

Conversely, if $F_{ii}F_{ii}^{-1} = F$ for each i then $F_{ij}F_{ij}^{-1} = F_{ij}F_{ij}^{-1} = F$ for all i and j for which $F_{ij} \neq 0$ by [4, Lemma 1.1]. Let $d = (d_{ij}) \in M$, $d_{ij} \in F$, $d \neq 0$. Then $d_{ij} = a_{ij}b_{ij}^{-1}$ for some $a_{ij} \in F_{ij}$ and $b_{ij} \in F_{jj}$, $i, j = 1, \ldots, n$. Now $\bigcap_{i=1}^{n} b_{ij}F_{ij} \neq 0$ for each j by [4, Lemma 1.1], and hence there exist nonzero $b_j \in F_{ij}$ and $c_{ij} \in F_{jj}$ such
that $b_j = b_{ij}c_{ij}$, $i,j = 1, \ldots, n$. Clearly $d = ab^{-1}$ where $a = \sum a_{ij}c_{ij}e_{ij}$ and $b = \sum b_{ij}e_{ij}$. This proves 3.6.

3.7. Theorem. Let S be a T-ring in $(F)_n$ given by 3.2 such that $S \subseteq (F)_n$. Then S is potent iff

$$F_{jj}F_{kk}^{-1} = F, \quad j < k, \ j, k = 2, \ldots, n.$$

Proof. Assume that S is potent. Let j and k be integers such that $2 \leq j < k \leq n$ and let $d \in F$, $d \neq 0$. Then $d = a_{ij}a_{kj}^{-1}$ for some $a \in F_{ik}$ by 3.5. If

$$a = a_{jj}e_{jj} + a_{kk}e_{kk},$$

then $a \in S$ and $A = (aR)^*$ is an atom of L^*_s (since a^r is a coatom). By assumption, $b^2 \neq 0$ for some $b \in A$. If $b = \sum b_{rs}e_{rs}$, $b_{rs} \in F_{rs}$, then $b_{rs} = 0$ if $r \neq j$ or k and $b_{js} \neq 0$ iff $b_{ks} \neq 0$. For if $b_{rs} \neq 0$ with $r \neq j$ or k, or if $b_{js} \neq 0$ and $b_{ks} = 0$, then $(be_{rs}) \cap aR \neq 0$ contrary to the atomicity of A. Hence, either $b_{jj} \neq 0$ or $b_{kk} \neq 0$.

If $b_{jj} \neq 0$, then $(be_{jj}) \cap aR \neq 0$ and $b_{jj}f = a_{jj}g$, $b_{jj}f = a_{jj}g$ for some nonzero $f, g \in F$. Hence, $a_{ij}a_{kk}^{-1} = b_{jj}b_{jj}^{-1} \in F_{jj}F_{jj}^{-1}$. If $b_{kk} \neq 0$, then $(be_{kk}) \cap aR \neq 0$ and $a_{ij}a_{kk}^{-1} = b_{jk}b_{kk}^{-1} \in F_{jk}F_{kk}^{-1}$ by the same reasoning. However, if both F_{jk} and F_{kj} are nonzero, then $F_{kk}F_{kk}^{-1} \subseteq F_{jk}F_{kj}^{-1}$. Therefore, $d \in F_{jj}F_{kj}^{-1}$. We conclude that $F_{jj}F_{kj}^{-1} = F$.

Conversely, let us assume that 3.8 holds. Every atom A of L^*_s contains a nonzero element a of the form $a = a_{kk}e_{kk} + \cdots + a_{ie}e_{ie}$, $a_i \in F_{ik}$, $a_k \neq 0$. If $k = 1$, then $a^2 \neq 0$ and A is potent. If $k > 1$, we claim that there exists some $b = b_{ie}e_{ie} + \cdots + b_{ne}e_{ne} \in A$, $b_i \in F_{ik}$, with $b_i \neq 0$ iff $a_i \neq 0$. Since $b^2 \neq 0$, this will prove that A is potent and hence will prove the theorem.

Such a $b \in A$ exists iff $af = b_i g$, $i = k, \ldots, n$, for some nonzero $f, g \in F$; i.e., iff

$$a^{-1}b_k = a^{-1}b_i \quad \text{for each } i \text{ for which } a_i \neq 0.$$

Assume, for simplicity of notation, that $a_i \neq 0$ if $k \leq i \leq p$ and that $a_i = 0$ if $i > p$. If we have found nonzero $b_i \in F_{ik}$, $i = 1, \ldots, m - 1$, for which (1) holds, with $m \leq p$, then let us select nonzero $b_m \in F_{mk}$ and $c \in F_{kk}$ such that $a_i^{-1}b_ic = a_m^{-1}b_m$ (which we can do, since $F_{kk}F_{kk}^{-1} = F$). Then $a_i^{-1}b_lc = a_i^{-1}b_mc = a_m^{-1}b_m$, $i = 1, \ldots, m - 1$, and (1) follows by induction. This proves 3.7.

If a T-ring is potent, then its block numbers are the obvious ones according to the result below.

3.9. Theorem. Let S be a T-ring in $(F)_n$ whose blocks are defined by the numbers $0 = d_0 < d_1 < \cdots < d_k$ as in 3.2. If $S \subseteq (F)_n$ and S is potent, then

$L^*_s = \{T_0, \ldots, T_k\}$ where $T_0 = R$, $T_k = 0$, and

$$T_i = \sum_{r > m} \sum_{j=1}^n F_{rj}e_{rj}$$

where $m = d_i$; $i = 1, \ldots, k - 1$.
Proof. If \(A = e_{jj}S \), where \(j = d_i \) for some \(i, \ 0 < i \leq k \), then clearly \(A' = T \).
Conversely, if \(B \) is an atom of \(L^*_n \), let \(r \) be the maximum integer for which \(be_{rr} \neq 0 \) for some \(b \in B \). We claim that \(r = d_i \) for some \(i \). Otherwise, \(d_{i-1} < r < d_i \) for some \(i \) and we can find a nonzero \(ce_{uu} \in S \), where \(u = d_i \), and nonzero \(f \in F_{11} \)
\(g \in F_{ii} \) such that \(b(f_{ee}) = (ce_{uu})(ge_{nn}) \) just as we did in the proof of 3.7. Clearly \(ce_{uu} \in B \), contrary to the choice of \(r \). Since \(B \) contains nonzero elements of the form \(be_{rr} \) for \(r = 1, \cdots, d_i \) and \(Be_{ss} = 0 \) if \(s > d_i \), evidently \(B' = T_i \). This proves 3.9.

The block numbers of the potent ring \(S \) of 3.9 clearly are \((d_1 - d_0, \cdots, d_k - d_{k-1})\).
Thus, 3.9 gives us a way of constructing FPI-rings having any prescribed block numbers. In particular, any full T-ring in \((F)_n\) is an FPI-ring. A T-ring over the ring of integers is also an FPI-ring.

As a slightly different example, let \(F \) be a field which has a nonzero subring \(K \)
such that \(KK^{-1} \neq F \). Then the \(2 \times 2 \) matrix rings
\[
S = Fe_{11} + Fe_{21} + Ke_{22}, \quad M = Fe_{11} + Fe_{21} + Fe_{22}
\]
are both potent. However, \(SS^{-1} \neq M \), i.e., \(S \) doesn’t have \(M \) as a classical quotient ring.

We point out that if \(S \) is a potent T-ring in \((F)_n\) such that \(S \leq (F)_n \) and \(F_{kj} \) and \(F_{k'j} \) are nonzero for some \(j \) and \(k \), say with \(k > j \), then
\[
(1) \quad F_{jj}F_{jj}^{-1} = F_{kk}F_{kk}^{-1} = F.
\]
To prove (1), we have that for any nonzero \(a, b, c, d \in F \) there exist \(f \in F_{jj} \) and \(g \in F_{kk} \) such that \(a^{-1}db = fg^{-1} \), or \(d = (afc)(bgc)^{-1} \). By letting \(a, c \in F_{jj} \) and \(b \in F_{kk} \), we see that \(d \in F_{jj}F_{jj}^{-1} \); and by letting \(a \in F_{kk} \), \(b \in F_{kk} \), and \(c \in F_{kk} \), we can see that \(d \in F_{kk}F_{kk}^{-1} \). Since \(c \) is any nonzero element of \(F \), (1) is proved.

The situation described in the preceding paragraph will occur in T-ring \(S \) of 3.2 iff \(d_{i+1} - d_i > 1 \) for some \(i \). If \(S \leq (F)_n \), then \(F_{11}^{-1}F_{11} = F \) irrespective of whether or not \(d_1 - d_0 > 1 \). If, in addition, \(S \) is potent and \(d_{i+1} - d_i > 1 \) for all \(i > 0 \), then \(F_{kk}F_{kk}^{-1} = F \) for all \(k \) by (1) above. This proves the following corollary of 3.6 and 3.7.

3.10. Corollary. Let \(S \) be a T-ring in \((F)_n\) defined by 3.2, \(S \leq (F)_n \), and \(M \) be the full cover of \(S \). If \(S \) is potent and \(d_{i+1} - d_i > 1 \) for all \(i > 0 \), then \(SS^{-1} = M \).

4. FPI-rings as matrix rings. It is well known that every \(n \)-dimensional
I-ring \(R \) has a full ring \(Q \) of linear transformations of an \(n \)-dimensional vector space over a field as a quotient ring and that \(L^*_n(Q) \cong L^*_n(R) \) under the correspondence \(A \to A \cap R, \ A \in L^*_n(Q) \). (See [1] for references.) Let \(R \) be an FPI-ring, and the \(A_i \) and \(B_j \) be as given in 2.6. Corresponding to the basis \(\{A_1, \cdots, A_n\} \)
of \(L^*_n(R) \) is an atomic basis \(\{A'_1, \cdots, A'_n\} \) of \(L^*_n(Q) \). By [5, Proposition 5, p. 52], there exists a set \(\{e_{ij} | i, j = 1, \cdots, n\} \) of matrix units in \(Q \) such that \(A'_i = e_{ii}Q \) and hence \(A_i = (e_{ii}Q) \cap R, \ i = 1, \cdots, n \). Clearly \(B_i = (\bigcup_{j \neq i} A_j)^\ell = [(\Sigma_{j \neq i} e_{jj}Q) \cap R]^\ell = (Qe_{ii}) \cap R, \ i = 1, \cdots, n \).
Relative to the given set of matrix units in \(Q \), there exists a field \(F \) such that [6; Proposition 6, p. 52]

\[
Q = \sum_{i,j=1}^{n} F e_{ij} \cong (F)^n.
\]

Then

\[
A_i \cap B_j = F e_{ij}, \quad i, j = 1, \ldots, n,
\]

for some additive subgroups \(F_{ij} \) of \(F \) satisfying 3.1. If we let

\[
S = \sum_{i,j=1}^{n} F e_{ij},
\]

then \(S \) is a subring of \(R \). By 2.6 (5), \(F_{ij} \neq 0 \) iff \(i > d_p \) and \(d_p < j \leq d_p + 1 \) for some \(p \). Thus, \(S \) is a T-ring in \((F)^n \) with the same block numbers as \(R \).

Since \(B_1 = 0 \), we know that \(B_1 \leq R \). Also, \(\{ A_1 \cap B_1, \ldots, A_n \cap B_1 \} \) is an atomic basis of \(L^*_n(B_1) \). Hence, \(F_{11}e_{11} + \cdots + F_{nn}e_{nn} \leq B_1 \leq R \), and therefore (since \(F_{11}e_{11} + \cdots + F_{nn}e_{nn} \subset S \)) \(S \leq R \leq Q \).

Associated with the T-ring \(S \) is the full T-ring \(M \) over \(F \) with the same block numbers as \(S \).

4.2. Lemma. If \(R \) is an FPI-ring and rings \(Q, S, \) and \(M \) are defined as above then \(S \subset R \subset M \).

Proof. If \(b \in R \), then \(b \in Q \) and \(b = \sum b_{ij} e_{ij} \) for some \(b_{ij} \in F \). If \(b_{rs} \neq 0 \) then \((e_{rf})b(e_{sg}) \in R \) for any nonzero \(f \in F_{rs} \) and \(g \in F_{as} \); i.e., \(c = f b_{rs} g e_{rs} \in R \). Since \(c \in A_r \cap B_s \), evidently \(f b_{rs} g \in F_{rs} \) and \(F_{rs} \neq 0 \). Thus, \(b \in M \). This proves 4.2.

4.3. Theorem. If \(R \) is an FPI-ring and \(S \subset R \subset M \) as in 4.2, then \(S \) is an FPI-ring having the same dimensions and same block numbers as \(R \).

Proof. Since \(S \leq Q \), \(\dim S = \dim R \) and \(F_{j1} F_{m1}^{-1} = F \) for all \(j \) and \(m \). Let \(a_{j1} + a_{m} e_{m1} = a \in S \), where \(1 < j < m \), \(a_{j1} \in F_{j1} \), and \(a_{j} \neq 0 \) and \(a_{m} \neq 0 \). Also let \(d = a_{j} a_{j}^{-1} \) and \(e = e_{jj} + d e_{mj} \). Clearly \(e^2 = e \) and \(eQ \) is an atom of \(L^*_n(Q) \). Hence, \(A = eQ \cap R \) is an atom of \(L^*_n(R) \). As such, it is potent. Let \(b \in A \), \(b^2 \neq 0 \).

Now \(b = \sum (e_{ji} + d e_{mi}) c_i \) for some \(c_i \in F \). Since \(b^2 \neq 0 \), either \(c_j \neq 0 \) or \(c_m \neq 0 \). Assume that \(c_j \neq 0 \). Then \((e_{jj} f)(b(e_{jj} g)) \in F_{jj} e_{jj} \) and \((e_{mm} h)(b(e_{jj} g)) \in F_{mj} e_{mj} \) for all nonzero \(f, g \in F_{jj} \) and \(h \in F_{mm} \). Hence, \(f c_j g \in F_{jj} \), \(h d c_j g \in F_{mj} \), and \((h d f^{-1})(f c_j g) \in F_{mj}, h d f^{-1} \in F_{mj} F_{jj}^{-1} \). Since \(d \) ranges over \(F \), so does \(h d f^{-1} \) and therefore \(F_{mj} F_{jj}^{-1} = F \) (or, taking inverses, \(F_{jj} F_{mj}^{-1} = F \)).

If \(c_j = 0 \) but \(c_m \neq 0 \), then \((e_{mm} f)(b(e_{mm} g)) \in F_{mm} e_{mm} \) and \((e_{jj} h)(b(e_{mm} g)) \in F_{jm} e_{jm} \) for all nonzero \(f, g \in F_{mm} \) and \(h \in F_{jj} \). Hence, \(f d c_m g \in F_{mm} \), \(h c_m g \in F_{jm} \), and \((f d h^{-1})(h c_m g) \in F_{mm}, f d h^{-1} \in F_{mm} F_{jj}^{-1} \). Therefore, \(F_{mm} F_{jm}^{-1} = F \). By previous remarks, we must also have \(F_{jj} F_{mj}^{-1} = F \). Thus, \(S \) is potent by 3.7.
If the block numbers of S, and hence also of R, are all greater than 1 with the possible exception of the first one, then $F_{ii}F_{ii}^{-1} = F$ for all i and $SS^{-1} = M$ by 3.6. Clearly, then, $RR^{-1} = M$, and we have proved the following result.

4.4. Theorem. Let R be an FPI-ring with block numbers (m_1,\ldots,m_k). If $m_i > 1$ for $i = 2,\ldots,m_k$, then $RR^{-1} = M$, the full T-ring over a field F with block numbers (m_1,\ldots,m_k).

5. Reducible rings. Let us call a ring R reducible iff $R_{\mathfrak{a}} = 0$ and $C_\ast \neq \{0,R\}$. If $H \in C_\ast$, $H \neq 0$ or R, then $K = H^t \in C_\ast$ also and $H \cap K = 0$, $H = K^t$[3.6.7]. Hence, $H + K \leq R$. If R is atomic, then each atom of $L_\ast(R)$ is contained in either H or K by our remarks in §1. Therefore, the set of atoms of $H + K$ coincides with the set of atoms of R, and R is potent iff $H + K$ is potent.

This leads us to consider the direct sum $R = R_1 \oplus R_2$ of two rings R_1 and R_2. Clearly, $L_\ast(R_i) \subseteq L_\ast(R)$, $i = 1,2$. Let us assume that $R_i' = 0$ (in R_i), $i = 1,2$. Then $C \cap R_i \neq 0$ for each right ideal C of R not contained in R_j, $i \neq j$. In particular, if C is a large right ideal of R then $C \cap R_i$ is a large right ideal of R_i, $i = 1,2$. Conversely, if C_i is a large right ideal of R_i, $i = 1,2$, then $C = C_1 + C_2$ is a large right ideal of R. From these remarks, it follows readily that $R^\Delta = R_1^\Delta + R_2^\Delta$. If $R^\Delta = 0$, then it is not difficult to show that

$$L_\ast(R) = \{A_1 + A_2 \mid A_i \in L_\ast(R_i)\}.$$

Hence, R is potent iff R_1 and R_2 are potent.

If R is an FP-ring, and (R_1,\ldots,R_n) is the set of atoms of C_\ast, then $R_1 + \cdots + R_n$ is a direct sum of ideals of R and $R_1 + \cdots + R_n \leq R$ [3, p. 541]. By our remarks above, each R_i is an FP-ring. Actually, each R_i is an FPI-ring. Let the T-rings S_i, M_i, and Q_i be selected as in 4.2. $S_i \subseteq R_i \subseteq M_i \subseteq Q_i$, $i = 1,\ldots,n$. Then $Q_1 + \cdots + Q_n$ is the maximal right quotient of $R_1 + \cdots + R_n$, so that

$$S_1 + \cdots + S_n \subseteq R_1 + \cdots + R_n \subseteq R \subseteq Q_1 + \cdots + Q_n.$$

If $b \in R$, then $b = \sum b_i$, $b_i \in Q_i$, $bR_i \subseteq R_i$, and hence $b_iS_i \subseteq M_i$ for each i. Clearly, then, $b_i \in M_i$ for each i and $b \in M_1 + \cdots + M_n$. Thus, $R \subseteq M_1 + \cdots + M_n$.

The theorem below follows from these remarks and the work of the preceeding sections.

5.1. Theorem. If R is an FP-ring then there exist FPI-rings R_1,\ldots,R_n such that $R_1 \oplus \cdots \oplus R_n \leq R$. Furthermore, if S_i and M_i are the associated T-rings of R_i, selected as in 4.2, $i = 1,\ldots,n$, then

$$S_1 \oplus \cdots \oplus S_n \leq R \leq M_1 \oplus \cdots \oplus M_n.$$

If $M = M_1 \oplus \cdots \oplus M_n$, then $RR^{-1} = M$ iff $R_iR_i^{-1} = M_i$, $i = 1,\ldots,n$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
BIBLIOGRAPHY

UNIVERSITY OF ROCHESTER,
ROCHESTER, NEW YORK