The Hahn-Banach theorem for finite dimensional spaces
HTML articles powered by AMS MathViewer
- by William E. Bonnice and Robert J. Silverman
- Trans. Amer. Math. Soc. 121 (1966), 210-222
- DOI: https://doi.org/10.1090/S0002-9947-1966-0185412-0
- PDF | Request permission
Correction: Trans. Amer. Math. Soc. 139 (1969), 163-166.
References
- Mahlon M. Day, Normed linear spaces, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962. MR 0145316
- M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Amer. Math. Soc. Translation 1950 (1950), no. 26, 128. MR 0038008
- Béla de Sz. Nagy, Sur les lattis linéaires de dimension finie, Comment. Math. Helv. 17 (1945), 209–213 (French). MR 13220, DOI 10.1007/BF02566242
- R. J. Silverman and Ti Yen, The Hahn-Banach theorem and the least upper bound property, Trans. Amer. Math. Soc. 90 (1959), 523–526. MR 102725, DOI 10.1090/S0002-9947-1959-0102725-5 A. Yudin, Solution des deux problèmes de la théorie des espaces semi-ordonnés, C. R. (Dokl.) Acad. Sci. URSS (N.S.) 23 (1939), 418-422.
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 121 (1966), 210-222
- MSC: Primary 46.06
- DOI: https://doi.org/10.1090/S0002-9947-1966-0185412-0
- MathSciNet review: 0185412