Limit theorems for Markov processes
HTML articles powered by AMS MathViewer
- by S. R. Foguel
- Trans. Amer. Math. Soc. 121 (1966), 200-209
- DOI: https://doi.org/10.1090/S0002-9947-1966-0185642-8
- PDF | Request permission
References
- J. L. Doob, Stochastic processes, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1953. MR 0058896 N. Dunford and J. T. Schwartz, Linear operators, Interscience, New York, 1958.
- S. R. Foguel, An $L_{p}$ theory for a Markov process with a sub-invariant measure, Proc. Amer. Math. Soc. 16 (1965), 398–406. MR 176523, DOI 10.1090/S0002-9939-1965-0176523-9
- Paul R. Halmos, Measure Theory, D. Van Nostrand Co., Inc., New York, N. Y., 1950. MR 0033869
- T. E. Harris, The existence of stationary measures for certain Markov processes, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, 1954–1955, vol. II, University of California Press, Berkeley-Los Angeles, Calif., 1956, pp. 113–124. MR 0084889
- S. Orey, Recurrent Markov chains, Pacific J. Math. 9 (1959), 805–827. MR 125632
- Kôsaku Yosida and Edwin Hewitt, Finitely additive measures, Trans. Amer. Math. Soc. 72 (1952), 46–66. MR 45194, DOI 10.1090/S0002-9947-1952-0045194-X
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 121 (1966), 200-209
- MSC: Primary 60.60
- DOI: https://doi.org/10.1090/S0002-9947-1966-0185642-8
- MathSciNet review: 0185642