
A LATTICE-POINT PROBLEM

BY

BURTON RANDOL(i),(2)

Introduction. Suppose n S: 2, and suppose T(zx,...,z„) = T(Z) is a positive

function, defined in E"— {0} and C00 there, and homogeneous of positive weight

w, i.e., T(rZ) = rwT(Z) (r > 0). (The differentiability restriction on T(Z) is simply

one of convenience. It can generally be weakened to suit the particular case

at hand.)

Define

1. C= {Z T(Z)^1}.

2. ÔC = {Z T(Z) = 1}.

3-    V=   ScdVz       (dVz = dzx-dzn).

4. N(x) = the number of integral lattice-points N, such that T(N) í£ x

(x>0).
5. R(x) = N(x) - Vx"lw.

The problem of the title consists of finding asymptotic estimates for R(x), and

in §1, we will obtain a general theorem along these lines, assuming a minimum

amount of knowledge about dC. In §2, we will indicate by an example how in some

cases the results of §1 can be considerably refined . The case in which 8C has

everywhere positive Gaussian curvature is discussed in [2] and [3].

1. We begin with a postulate about dC. Several cases in which the postulate

is valid are given in [2], [3],and [6]. It is, moreover, valid in many arithmetically

interesting cases which are not treated in these papers. For example, if

T(Z) = z\k + —h z2k, it is not difficult to show that the numbers a and A which

occur in the postulate can be taken to be (n — l)/2fc, and [(n — l)/2fe] + 1,

respectively.

Postulate. There exists a positive integer A, and a number 0<a^(n —1)/2,

such that for any function f(Z), Ch in a neighborhood of dC, there is a positive

number M(f), for which

LJec
f(Z)e2*iiY-Z)dSz\SM(f)\Y
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Furthermore, M(f) depends only on bounds for f(Z) and its first A derivatives

in a neighborhood of dC. (Here Y = (yx,-,y„), \ Y\ =(yx2+ — + yl)U2, and

dSz is the area element on dC.)

We can now state the result of §1, which consists of an upper bound for | R(x) |.

Theorem. R(x) = 0(xR), where R = (n2 -n- na)¡w(n - a).

Remark. In the proof of this theorem, it will be convenient to make theras-

sumption that w ^ w0 = [n — a] 4- A + 2, and we shall henceforth assure  that

this is the case. This involves no loss of generality, since if w < w0, we can obtain

the desired result by replacing T(Z) by (T(Z))wolw, and then replacing x by

xwo/w m ^ resuiting estimate.

We now pass to the proof of the theorem, which, while not difficult, is somewhat

long, and for the sake of clarity, we state now without proof two preliminary

lemmas. We will show how the theorem follows from these, and then prove the

lemmas themselves. In order to state the lemmas, we need a few definitions.

Define

6. J(x,Z) = the characteristic function of the set {z\ T(Z) ^ x}.

7. J(x, Y) = the Fourier transform of J(x,Z) in the second variable. I.e.,

J(x,Y)= f J(x,Z)exp\_2ni(Y,Z)~\dVz
Je»

8. rx = (nw — n — wa)/w(n — a).

9. r2 = a/w(n — a).

10. z = xri.

11. p = [«-«].

12. For each positive integer q, and function f(x), integrable on finite sub-

intervals of (0, oo), set

px+z rx"~ *+z

**/(*) = dxx— f(xq)dxq (x0 = x).
Jx Jxa-i

For q = 0, define I°f(x) =/(x). Then for each q, Iq is a linear operator. If g is a

function of several variables, we attach a subscript to denote the variable in which

the operator is applied. E.g.,

J*x + z /*jc-i+z
dxx- g(xq,y)dxq.

X Jxtt-i
M

Lemma  1. IpJ(x, Y) = 0(Fx(x, Y)), where

Fx(x, Y) = xP'.+o.-i-")«'-11 yi -a+«) >

and the estimate is uniform in x and Y (Y i= 0),
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Lemma 1 furnishes an estimate which is good in x but not in Y. Lemma 2 goes

the other way around.

Lemma 2. IpJ(x, Y) = 0(F2(x, Y)), where

F2(x,Y) = JC(»+P«-*-í'-i>»'-1|y|-<i+p+°> >

and the estimate is uniform in x and Y (Y # 0).

Proof of the theorem. To begin with, it is clear that N(x) = £ J(x, N), where

the summation is over all integral lattice-points.

For each s > 0, let ôe(Z) be a nonnegative C°° function with support in the ball

\z\ ^ £, and such that

JLSs(Z)dVz = 1.

Set  Jc(x,Y)=  ¡EnJ(x,Z)5£(Y -Z)dVz, and Ne(x) = l,Je(x,N).

Then for each fixed e and x, JE(x, Y) is C00 in Y with compact support

Moreover, for x in bounded intervals, Ne(x) is uniformly bounded for small s, and

if x is such that the set {Z ¡ T(Z) = x) contains no integral lattice-points (all but

a countable number of x's have this property), then N(x) = lime^0Ne(x).

Now by the Poisson summation formula,

ZJE(x,N) =   ZJE(x,N)

=   lZSe(N)J(x,N)

= Se(0)J(x,0)+ l'ô£N)J(x,N)

=  Vxnlw+ lZ'oe(N)J(x,N),

where the prime on  a  summation  sign  means that   the  origin is omitted

from the sum.

But by the dominated convergence theorem,

IpN(x) = lim/piV£(x),
£-♦0

SO

I"N(x)  = I"Vxnlw  + limIx(l,'êe(N)J(x,N))
£->0

=   VIpx"!w   + UmI,'êe(N)IpJ(x,N),
£-►0

the interchange of summation and integration being justified by the rapidly

decreasing character of Be(N).

Thus by Lemmas 1 and 2,

IpN(x) = VI"xnlw + lim   S'   ác(iV)0(F1(x,iV))4-lim     S    öc(N)0(F2(x,N)).
£-»0   \N\¿XT2 E->0   \N\>X"2
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Now |<5e(iV)| ̂  1, so we see (e.g., by comparison with appropriate integrals)

that both the last two limits are 0(xpri+R). I.e., IpN(x) = VIpx"lw + 0(xprL+R).

But VIpx"lw = Vz"x0,w, for some x0 between x and x + pz, and by the mean-

value theorem,

xnJW _ Xn/W = 0(2(x + ^W.)-!) = 0(ZX("'W)-X).

I.e.,
VI"x"lw =  Vp x"'w + 0(zp + lxMw>~1)

=  VxMw)+pnzp + 0(xpn+R).

Combining this with our previous information, we find that

I"N(x)  =  Vx W)**" + 0(xpri + R).

Now N(x) is nondecreasing, so z"N(x) ^ IpN(x) £ zpN(x + pz). I.e.,

xpr'N(x) ^ Vx(n'w)+pri + 0(xpri+R) ^ xpnN(x + pxn).

By the first half of this inequality, we find that N(x) ^ Vxn,w+0(xR), and

making the substitution xx = x + pxri, we easily obtain from the second half that

N(xx) à Vxîlw + 0(xR). I.e., N(x) = Vxn/W + 0(xR), or R(x) = 0(xR). q.e.d.

Proof of Lemma 1.

J(x, Y) = xnlw f  exp {2ni \y\x 1/w(ß(Y),Z)}dVz,

where ß(Y) = Y/\y\, and by the divergence theorem, this integral is equal to

x("-1)/w(27t/| y |) -1 f    cxp{2ni\Y\x1/w(ß(Y),Z)}(ß(Y),n(Z))dSz,
Jec

where n(Z) is the outward normal to dC at the point Z.

Now by our postulate, the integral in this last expression is 0(\ Y\~*x~x,w),

uniformly in x and Y, since (/?( Y), n(Z)) can be differentiably extended (say homo-

geneously of weight zero) to a neighborhood of dC, and the derivatives of the

result are bounded independently of Y. Consider now IpJ(x, Y). The domain

of integration of the iterated integral has measure zp = xpri , and since the

argument of the integrand can only range between x and x + pz, we immediately

obtain that IpJ(x, Y) = 0(Fx(x, Y)), uniformly in x and Y (Y # 0). q.e.d.

For the proof of Lemma 2, we require one additional lemma.

Lemma 3. Suppose B(Z) is CJ in E",for some j 2: 2, and suppose ß is a unit

vector. Then there exists a vector field F(Z) = (fx(Z),---,f„(Z)), such that

1. Each f(Z) is (at least) of differentiability class CJ_1 in E".

2. divF(Z) = 0.

3. (ß,F(Z)) = B(Z).

4. For each compact set Sx, there exists a compact set S2, such   that
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fx(Z),---,f„(Z), and their first j — 1 derivatives on Sx, can be bounded in terms

ofB(Z)and its first j derivatives on S2. The bound does not, however, depend on ß.

Proof. Set ß = (ßx,---,ß„). Then since | ß \ = 1, at least one of the /?,• has absolute

value ^n_1/2. We will suppose ßx has this property, since the proof proceeds

along the same lines in the other cases.

Define /¡(Z) = 0, for 3 ^ / f¡¡ n. The equations to be satisfied then become

(i) ¥L+¥1=o-
ozx     oz2

(2) ßJi + ß2f2 = B.

Suppose the desired vector field existed. Then, differentiating (2) with respect

to zx, we would have

8fi      R   8f2 _ dB
PldTx+IÍ2 d~rx-ôTx'

or

dj± + ß_2df2^i_dB__

ôzx     ßx dzx      ßx dzx '

lß_2±_d_\ _1_

\ßxdzx      dz2)j2     ßx

Subtracting (1) from this, we get

dB
ßi àzx

If we set K = (1 + (ß2lßx)2)112, and divide both sides of the last equation by K,

we get

LihJL     1W 1      dB
K \ ßx dzx      dz2 J j2     Kßx  dzx '

The quantity on the left is simply the directional derivative of f2 in the direction

d = (ß2lßi> ~ l,0,---,0). Let P be the plane through the origin perpendicular to d.

Then f2(Z) can be got (modulo a function which is constant on lines parallel to d)

by integrating (llKßx)(dBldzx) from P to Z in a direction parallel to d. If, now,

we simply define f2(Z) by this integral, and define fx(Z) to be ßx1(B(Z) — ß2f2(Z)),

all the conclusions of the lemma are satisfied, q.e.d.

Definition. Suppose that y is a point in E", y is a positive number, and

F(Z) = (fx(Z),-.-,f„(Z)) is a continuous vector field in a neighborhood of dC.

Define

VF(y, Y) = f {exp2niy \Y\(ß(Y),Z)}(F(Z),n(Z))dSz.
JdC

Proof of Lemma 2. For each positive integer q, let A^ be the qih difference

operator in the variable x, with difference z. I.e.,
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*U(x,y)= Î  ( q. )(-iy-Jg(x+jz,y).
j = o\ J 1

Then if we set

Lp(x,Y)=  [Xdxx- f     1J(xq,Y)dxq        (x0 = 0),
Jo Jo

we have IpJ(x, Y) = ApxLpJ(x, Y). So if we can show that LpJ(x, Y) = 0(F2(x, Y)),

it is clear that the same estimate will hold for IpJ(x, Y). We will obtain the desired

estimate on LpJ(x, Y) as a consequence of the following result:

Suppose y^O fixed. Then for every integer q, satisfying 0 ^ q S P, there

exists a vector field Gq(Z) = (gql(Z), ■■■,gq„(Z)), having the following properties :

A. The functions gqi(Z), ■••,gqn(Z) are Cw~9~2in £", and on each compact set,

their first w — q — 2 derivatives can be bounded independently of Y.

B. L^'y) = (2,/ryl>+.xa(^(xl/W'y)'

where a(q) = (n + qw — q — l)w-1.

Before we pass to the proof of this statement, we note that it immediately gives

the desired estimate on LpJ(x, Y), if our postulate is applied to VGq(x1/w, Y), and

p is substituted for q.

We proceed now by an induction which terminates at p. The assertion is clearly

true for q = 0, since in that case we may take G0(Z) = ß(Y). Suppose now it is

true for some integer m, satisfying 0 ^ m < p. We will show that this implies its

truth for m + 1.

By hypothesis,

L*+1/(*'y) =(2^Y\y^[ ^VoS^,Y)dt,

and after a change of variable, this becomes

wm+l ¡-1

(3) (2ni\Y\y^X J0   ' Vg-{X     t>Y)dL

In order to analyze this integral, we use the following easily verified fact, which

is an analogue of the formula for integration in polar coordinates:

Suppose f(Z) is integrable on C. Then

(4) Í f(Z)dVz = f  t-ldt\ f(tZ)m(Z)dSz,
Jc Jo Jsc

where m(Z) = (Z,n(Z)).
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(To obtain this formula, it is sufficient to consider only C* homogeneous functions,

since their linear combinations are dense in L1^). For such functions, the result

is an immediate consequence of Euler's relation and the divergence theorem.)

Now we can extend m(Z) to be homogeneous of weight 0 in E" — {0}, by

defining m(Z) = (Z,grad T(Z)) [T(Z)]~1/w |gradT(Z)|_1, and we shall hence-

forth assume that this extension has been made. Note that with this definition,

m(Z) is C00 in E" — {0}, and never vanishes there, since Z is never perpendicular

to grad T(Z).

Making use now of (4), we see that (3) can be interpreted as a volume integral

wm+1 C

(5)   (2nijY\)-^n+mW+W~""i)W'1 1 B(ZH^P2ni\ Y \x^(ß(Y),Z)}dVz,

where

R(Z) = [m(Z)]-'[T(Z)]'"^-"-"--'(Gm([T(Z)]-1^Z), |gradT(Z) | ) '

Now rj(Z)fmm+w~m-iyw~i is C00 in En - {0} and homogeneous of weight

mw + w — m — 1, while the product of the remaining factors of B(Z) is homo-

geneous of weight 0, and is, by hypothesis, cw~m~2 for Z # 0. We con-

clude, therefore, that if we define R(0) = 0, then B(Z) is at least Cw~m-2in all

of E", since mw + w — m — 2 ^ w — m — 2.

Thus, by Lemma 3, there exists a vector field F(Z), such that

1. the components of F(Z) are cw_m~3 in E".

2. divf(Z) = 0.

3. (ß(Y), F(Z)) = B(Z).

4. on each compact set, the first w — m — 3 derivatives of the components of

F(Z) can be bounded independently of Y, since this is true for B(Z).

Now conditions (2) and (3) imply that

div [{exp 2ni\Y\x 1/w(ß( Y), Z)}F(Z)~]

= 2ni\Y\x1,wB(Z){exp2ni\ Y¡ x1/w(ß(Y),Z)},

so by the divergence theorem, (5) is equal to

wm+1
(•t«» + ll-l-2)»-y   r     1/W     y\

(27lj| y|)">+2

and if we set Gm+x(Z) = F(Z), this establishes the desired result for m + 1. q.e.d.

2. In this section, we will show by an example how in some cases the methods

of §1 can be refined to give considerably sharpened results. We will be working

in £2, and we will adopt the notation of §1, adjusted to the particular case

T(Z) = z2k + z2k, where k is a fixed positive integer greater than 1. Our result
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will be that for this particular choice of T(Z), R(x) = 0(x(2k-1)/4*2), and that

this exponent is the best possible. I.e., R(x) = Q(xi2k~1)/4k2).

Definition. For any nonzero point Y = (yx,y2) in £2, set

¿(y) = irim(|j>1|/|y|,|3>2|/|y|).

Lemma 4. Let T(Z) be as above. Then for every function f(Z), C1 in a

neighborhood of dC, there exists a positive number M(f), depending only on

bounds for f(Z) and its first derivatives in a neighborhood of dC, such that

if Y is a point not lying on one of the coordinate axes, then

í f(Z)e2ni(Y-zMSz    Ú M(f)\ Y\~112 [A(Y)J
Jec

(ft-l)/(2*-l)

Proof. We defer the proof of Lemma 4 to the end of this section.

Now let J(x, Y) be defined as before. I.e.,

xll2k    r

(6)       J(x, Y) = ------ J^exp {2nix1,2k j Y \(ß(Y),Z)}(ß(Y),n(Z))dSz.

Define IxJ(x, Y) as before, except that we now take z = x <3*-2>/3*

Suppose now that Y does not lie on either of the coordinate axes. Then by

using Lemma 4, and imitating the proofs of Lemmas 1 and 2, we obtain the

following estimates, which are the analogues of the estimates in Lemmas 1 and 2.

1. IxJ(x,Y) = 0(Fx(x,Y)), whereF1(x,y) = zx1/4fc|y|"3/2[X(y)]-(,:-1)/(2*-1) ,

and the estimate is uniform in x and Y.

2. IlJ(x, Y) = 0(F2(x, Y)), where F2(x, Y) = xi*k-1)/4k\Y\-5/2[A(Y)T{k~im2k~i),

and the estimate is uniform in x and Y.

Suppose now Y # 0 lies on one of the coordinate axes. Then (6), and a standard

application of the method of stationary phase (cf. [1, pp. 51-56]), shows that

(7)/(x,y) = Clx(2*-1)/4'2 Sin(2n\l\f!x*2~nl4k)+ 0(x(2*-2)/4*2| Y\-il + llk) ),

for some positive constant cx, and the error term is uniform in x and Y.

For later use, we define B(t) to be the continuous periodic function

^    SÍn(2OT!Í-7T/4fc)

4Cl n = i n1+1'2<        •

Consider now the family of functions N£(x) (e > 0), defined as in §1. As before,

lim   I1Ne(x) = I1N(x), and
E-»0

/ ^(x) = VI lx1/k + E ' $„(JV)LJ J(x, N).

We split the last sum into three parts
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S*   8¿N)IíJ(x,N)+i:*S.{N)iy(x,N)+     £**    B¿N)ll;J(,x,N).
|N|gxl/6k |D|>x"'6k

(Here the single asterisk means that the lattice-points which lie on the coordinate

axes are excluded, while the double asterisk means that the sum is taken over

precisely those nonzero lattice-points which lie on the coordinate axes.) We

estimate the first sum by replacing IxJ(x,N) by Fx(x,N), the second by replacing

IxJ(x,N) by F2(x,N), and the third by replacing J(x,N) by the estimate in (7).

To treat the first and second of the resulting three sums, note that since | BE(N) | ^ 1

for all N and £ > 0, these sums can be dominated by multiples of

/•it/4 i'x1l6k

zx1/4k
¡•nil fx'i°K

JO Jr = 1

and
J»7t/4 /*oo

d0\ f-Wj-i-««»"«^

respectively. But 0 -l*-1)/*2*-1) js integrable over [0,7r/4], so both these integrals

are finite, and a calculation shows that they are both 0(zx1/3k).

On the other hand, it is clear that as e -> 0, the third sum approaches

l1x(2k~1)l4k2B(x1'2k) + I10(xi2k-2)IAk\ uniformly on finite x-intervals. Thus,

letting £->0, we find that

l'N(x) = VIlx1,k + 0(zxll3k) + I1x(2k-1)l4k2B(xll2k) 4- llO(x(2k~2)l4k2).

Now VIlxllk = Vzx1,k + 0(zxll3k ), and N(x) is nondecreasing, so

zN(x) ^ Vzxllk + 0(zx1/3k) + /V2*-1)/4'2R(x1/2') + l10(xi2k-2)'4k2).

I.e.,

(8)   JV(x) - Vxllk ^ ii«,»-^,«/») + l^o(x(2k-2)l4k2) + 0(x1,3k),
z z

and this clearly implies that R(x) ;£ 0(xi2k~1)/4k ). Going the other way around,

zN(x + z) ^ Vzxllk + I1x'2k-1)l4k2B(xll2k) + l10(x(2k~2)l4k2) 4- 0(zxI/3k).

Now (x + z)llk = xllk + 0(x1/3k), so

N(x + z) - V(x + z)llk ^ -I1x(2k-lí,4k2B(xll2k)+ -l10(x(2k-2)l4k2) + 0(xll3k),
z z

and if we make the substitution xx = x + z, we easily obtain that

R(xx)^0(x[2k-1),4kl).

I.e., combining results, we find that R(x) = 0(x(2*~1)/4*2), which is a considerable

improvement on the estimate 0(x (2*~ 1)/k(4'[_ *>) which §1 gives. We can, moreover,

infer from our results that the exponent we have obtained is the best possible.
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To see this, note first of all that B(t) is negative in a neighborhoods / = 0. If,

now, we examine the inequality (8), it is clear that the sum of the second and third

terms on the right is 0(x(2k~2)l4k2). Moreover, since the variation of t1/2k over

the interval [x,x + z] tends to zero as x -* oo, it is clear that if x is large, and

x1/2k is an integer, then the first term on the right is actually of the order of

x(2fc-i)/«^ ancj tj^s suffices to prove the assertion.

Proof of Lemma 4. We shall suppose that Y is in the open first quadrant, and

is within 7t/4 radians of the z2-axis. This involves no loss of generality, since the

techniques required for other cases involve only obvious modifications of the

techniques for this case. We shall write Y in polar form as Y = I Y | (yx, y2).

Now there are exactly two points on dC at which the normal to dC is parallel

to y One of these occurs in the first quadrant. Call it P = (px,p2). Then since

(Pifc_1)P2fc_1) is tne direction of the normal to dC at (px,p2), we see that

yÍPi2k~í = yÍP22k~\ or y*Jy2* = (PilP2)2k'1. But since tt/4 ^ arg Y < n/2, we

have A(Y) = y*, so it is clear that there exists a constant c2 > 0, such that

p1^c2{A(Y)r<2k-i\

Now for purposes of integration, dC can be regarded as being composed of

two "hemispheres", namely, those points whose z2 coordinate is 5; 0, and those

points whose z2 coordinate is ^ 0. The contribution to the integral in Lemma 4

which comes from the upper hemisphere can be written as

(9) f     m(r)f*(r)e2,lWE(r)dr,

where E(r) = y\r + y*2(\ - r2k)1/2k, f*(r) =f(r,(l - r2k)1/2k), and m(r) represents

the distortion of measure which arises from the projection onto the z^axis.

Suppose now h(t) is a C00 function, identically 1 in a neighborhood of t = 0,

and having support in an interval 111 ̂  e, where e is a fixed positive number less

than 1 — (1/2)lt2k. Then the integral in (9) can be written as

(10) f   h(r- px)m(r)f*(r)e2"nYmr) dr + f   (l-h(r-px))m(r)f*(r)e2*imE^dr.

To deal with the second integeral, note that if it is combined with the integral

which corresponds to it, when the process we have described is duplicated in the

lower hemisphere, the result is uniformly 0( | Y |_1 ) (cf. [6, p. 767]).

Consider now the first integral in (10). (The techniques we will use to estimate

this integral apply equally well to the corresponding integral in the lower hemi-

sphere.) The integral in question can be written in the form

[\(r)F(r)e2nimEM dr +  Vh(r)F(r)e2nmE^ dr,

or
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(11) P A(-r)F( - r)e2nmEi(~r)dr + (  h(r)F(r)e2*imEllr)dr,
Jo Jo

where Ex(r) = E(r 4- px), and F(r) = m(r 4- px)f*(r + px).

We now estimate the second integral in (11). The same technique yields an

identical estimate for the first integral. To obtain the desired estimate for the

second integral, we need some information about Ex(r) (0^ r ^ e). To begin with,

we note that it is clear from computation and from the geometrical meaning of

Ex(r), that for 0 ¿¡ r ^ e, E'x(r), E"x (r) S 0. (Note that Ex(r) is simply the compo-

nent of the vector (r + px,(l — (r + px)2k)1/2k) in the direction of the normal

to ÔC at P.) Again by computation, it is clear that there exists c3 > 0, such that

\E'l(r)\^c3(r + px)2k~2. On the other hand,

ïi(r)| = j'Q\E"x(t)\dt

/•r/3 /•2r/3 /r

" + + "

Jo Jr/3 j2r/3

I.e., by the first mean-value theorem for integrals, and the fact that throughout

at least one of the three intervals of integration, (r + px)2k~2 must be at least of the

order of p2k~2, we obtain the inequality | E[(r) | 2: c4rp2k~2, for some c4 > 0, and

hence \E[(r)\^csr\_A(Y)'\(2k~2m2k~i), for some c5 > 0. (In the case at hand,

it is not necessary to split the integral into three parts to obtain the last inequality.

A device of this sort is, however, necessary to obtain the corresponding inequality

on | E'x( — r) |, and this is in turn required to estimate the first integral in (11).)

We now pass to the estimation of the second integral in (11). Set

5 = | y|-i/2[¿(y)]-<*-»>/<»-*>. Then

(eh(r)F(r)e2ni^B'(r)dr =   ('+   f
Jo Jo        Ja

= o(|y|-1/2[J4(F)]-<»-1>/("-1>)+ f\

(We assume 5 < s, since otherwise there is nothing to prove.)

Now

j\(r)F(r)e2'™™dr=1JrfT ^-~^h(r)F(r)d(e2^E^),

and if we note that \¡E'x(r) is increasing,'and apply the second mean-value theorem

to the real and imaginary parts of the integral on the right, we immediately obtain

that this last expression is 0(| y|~1/2[4(y)]~*"1)/(2*~1)). q.e.d.
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