Global structure in von Neumann algebras
Author:
Edward G. Effros
Journal:
Trans. Amer. Math. Soc. 121 (1966), 434-454
MSC:
Primary 46.65
DOI:
https://doi.org/10.1090/S0002-9947-1966-0192360-9
MathSciNet review:
0192360
Full-text PDF Free Access
References | Similar Articles | Additional Information
- [1] Jean Dieudonné, Sur le théorème de Lebesgue-Nikodym. III, Ann. Univ. Grenoble. Sect. Sci. Math. Phys. (N.S.) 23 (1948), 25–53 (French). MR 0028924
- [2] Jacques Dixmier, Les algèbres d’opérateurs dans l’espace hilbertien (Algèbres de von Neumann), Cahiers scientifiques, Fascicule XXV, Gauthier-Villars, Paris, 1957 (French). MR 0094722
- [3] J. Dixmier, Dual et quasi-dual d’une algèbre de Banach involutive, Trans. Amer. Math. Soc. 104 (1962), 278–283 (French). MR 139960, https://doi.org/10.1090/S0002-9947-1962-0139960-6
- [4] Edward G. Effros, Transformation groups and 𝐶*-algebras, Ann. of Math. (2) 81 (1965), 38–55. MR 174987, https://doi.org/10.2307/1970381
- [5] Edward G. Effros, The Borel space of von Neumann algebras on a separable Hilbert space, Pacific J. Math. 15 (1965), 1153–1164. MR 185456
- [6] J. Feldman, Borel sets of states and of representations, Michigan Math. J. 12 (1965), 363–366. MR 182893
- [7] R. Godement, Sur la théorie des représentations unitaires, Ann. of Math. (2) 53 (1951), 68–124 (French). MR 38571, https://doi.org/10.2307/1969343
- [8] Alain Guichardet, Sur un problème posé par G. W. Mackey, C. R. Acad. Sci. Paris 250 (1960), 962–963 (French). MR 110027
- [9] Paul R. Halmos, The decomposition of measures, Duke Math. J. 8 (1941), 386–392. MR 4718
- [10] Paul R. Halmos, Measure Theory, D. Van Nostrand Company, Inc., New York, N. Y., 1950. MR 0033869
- [11] -, Introduction to Hilbert space and the theory of multiplicity, Chelsea, New York, 1951.
- [12] Irving Kaplansky, A theorem on rings of operators, Pacific J. Math. 1 (1951), 227–232. MR 50181
- [13] C. Kuratowski, Topologie. I, 3rd ed., Monagrafie Mat. 20, Warsaw, 1952.
- [14] L. H. Loomis, The lattice theoretic background of the dimension theory of operator algebras, Mem. Amer. Math. Soc. No. 18 (1955), 36. MR 0073960
- [15] George W. Mackey, Induced representations of locally compact groups. I, Ann. of Math. (2) 55 (1952), 101–139. MR 44536, https://doi.org/10.2307/1969423
- [16] George W. Mackey, Induced representations of locally compact groups. II. The Frobenius reciprocity theorem, Ann. of Math. (2) 58 (1953), 193–221. MR 56611, https://doi.org/10.2307/1969786
- [17] -, The theory of group representations (notes by Fell and Lowdeaslager), Lecture notes, Univ. of Chicago, Chicago, Ill., 1955.
- [18] George W. Mackey, Borel structure in groups and their duals, Trans. Amer. Math. Soc. 85 (1957), 134–165. MR 89999, https://doi.org/10.1090/S0002-9947-1957-0089999-2
- [19] George W. Mackey, Infinite-dimensional group representations, Bull. Amer. Math. Soc. 69 (1963), 628–686. MR 153784, https://doi.org/10.1090/S0002-9904-1963-10973-8
- [20] J. von Neumann, Zusätze zur Arbeit “zur Operatorenmethode...”, Ann. of Math. (2) 33 (1932), no. 4, 789–791 (German). MR 1503096, https://doi.org/10.2307/1968225
- [21] V. A. Rohlin, On the fundamental ideas of measure theory, Amer. Math. Soc. Translation 1952 (1952), no. 71, 55. MR 0047744
- [22] J. Schwartz, Two finite, non-hyperfinite, non-isomorphic factors, Comm. Pure Appl. Math. 16 (1963), 19–26. MR 149322, https://doi.org/10.1002/cpa.3160160104
- [23] J. Schwartz, Non-isomorphism of a pair of factors of type 𝐼𝐼𝐼, Comm. Pure Appl. Math. 16 (1963), 111–120. MR 163179, https://doi.org/10.1002/cpa.3160160203
Retrieve articles in Transactions of the American Mathematical Society with MSC: 46.65
Retrieve articles in all journals with MSC: 46.65
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1966-0192360-9
Article copyright:
© Copyright 1966
American Mathematical Society