On complex quadratic fields with class number equal to one
HTML articles powered by AMS MathViewer
- by Harold Stark PDF
- Trans. Amer. Math. Soc. 122 (1966), 112-119 Request permission
References
-
H. Heilbronn and E. H. Linfoot, On the imaginary quadratic corpora of class-number one, Quart. J. Math. Oxford Ser. 5 (1934), 293-301.
D. H. Lehmer, On imaginary quadratic fields whose class number is unity, Bull. Amer. Math. Soc. 39 (1933), 360.
C. Jordan, Calculus of finite differences, 2nd ed., Chelsea, New York, 1947.
- N. E. Nörlund, Mémoire sur le calcul aux différences finies, Acta Math. 44 (1923), no. 1, 71–212 (French). MR 1555184, DOI 10.1007/BF02403922
- J. F. Steffensen, Interpolation, Chelsea Publishing Co., New York, N. Y., 1950. 2d ed. MR 0036799
- Table of natural logarithms for arguments between zero and five to sixteen decimal places, National Bureau of Standards Applied Mathematics Series, No. 31, U.S. Government Printing Office, Washington, D.C., 1953. MR 0057608
Additional Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 122 (1966), 112-119
- MSC: Primary 10.66; Secondary 10.68
- DOI: https://doi.org/10.1090/S0002-9947-1966-0195845-4
- MathSciNet review: 0195845