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Introduction. In spite of increased study in recent years, our knowledge 01

measures in function spaces remains poor. This is true even in the simplest case

of Gaussian measures. In a recent and excellent survey article [14], A. M. Yaglom

attributes this state of affairs to a lack of concrete theorems about the integral

calculus of function spaces. Of all measures in function spaces, we know most

about Wiener measure especially because of a long series of papers by R. H.

Cameron and W. T. Martin on the Wiener integral. One result, the linear

transformation theorem [3], has recently been generalized but still for Wiener

measure by one of Cameron's students, D. A. Woodward [13]. The purpose of

our paper is to state and prove an analog of Woodward's theorem for general

Gaussian measures. We mention that our results are technically related to the

elegant and highly abstract work of I. E. Segal [9] but in our opinion cannot

be easily deduced from it.

Some notation and background material are needed to set the stage for our

main theorem. By a Gaussian process (sometimes symbolized {x(t), tel}),

we shall mean a triple {X,B,Xrm} where X = ATF) is a set of real valued functions

defined on an interval / = [a, ft], B is the Borel field of subsets of X generated

by sets of the form

{xeX:x(f0)<c, f0e/}

and Xm is a Gaussian probability measure on B determined by a covariance

function r and a mean function m [5, pp. 71-74]. In this paper we shall always

take the mean function m to be identically zero; hence without confusion we may

write kr in place of krm. We will assume that r is continuous on / x / and also that

it is regular enough so that Z(/) may be taken as C(/), the space of continuous

functions on /. For a discussion of sufficient conditions on r which make this

possible, see [7, pp. 519-522] in the general case and [2] in the stationary case.

As a special but important example, we mention the Wiener process {C, B, Xw}
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TRANSFORMATIONS OF GAUSSIAN MEASURES 99

determined by the covariance w(s, t) = min (s, í). It is for this process that a host

of transformation theorems have been obtained, in particular, the afore mentioned

theorem of Woodward. We will state this theorem and our generalization presently

but first we need a definition of bounded variation for a function of two variables.

We say that MeBVH if there exists (to,s0) in I x I such that M(t0,s) and

M(t,s0) ate of bounded variation (BV) on I and if var(M) on I x / is finite where

m n

var(M) = sup L    I \M(thSj) - M(thSj_y) + M(t^y,Sj.y) - MiU^sJ)].
i=i j=i

This definition which is given by Woodward is due to Hardy and Krause (see

[1], [4] for a discussion of properties of functions in BVíf and the double

Riemann-Stieltjes integral based on them and [6] for the n-dimensional general-

ization). We need also a symbol for a certain Fredholm determinant. Let

M(Sy,Sy)-M(Sy,Sn)

(o.i) ®=®M=i+ i i; f... f
n = i rti Jj        J]

M(s„,Sy)---M(sn,s„)

dsy ••■ds„

Theorem 1 (Woodward [13]). Let {C,B,XW} be the Wiener process on I = [0,1]

and let

Í   f M(u,i
Jo Jo

(Tx)(t) = x(t) + M(u,s) du dx(s)
Jo Jo

be a transformation defined on C where M e B\H and SM / 0. Then T carries

C onto C in a one-to-one manner and if F is a measurable function for which

either side of the following equation exists, both sides exist and are equal.

(0.2) E{F(x)} = \9\E{F(Tx)exp[ - T(x)/2]}

where

>F(x) =   f   f   Í 2M(s,t) + f  M(u,t)M(u,s) du 1 dx(s) dx(t).

Some differences between this theorem and the one in Woodward's original

paper should be noted. First, Woodward allows the kernel M to have a special

kind of jump discontinuity on the diagonal s = t, the so called Volterra case.

Second, since

Aw{xeC:x(0) = 0} = l,

he considers the space of continuous functions which vanish at 0 rather than our

C. Lastly he uses w(s, t) = min (s, í)/2 rather than min (s, r) so that there is an

extra factor of 2 in the exponential of formula (0.2) in his paper.

Our extension of this theorem to general Gaussian processes is
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100 D. E. VARBERG [March

Theorem 2. Let {C,B,Xr} be a Gaussian process on I = [a, b] determined by a

covariance function r which is continuous on I x I (see remarks in second para-

graph of this section). Let

f*b   /»ft

(Tx)(í) = x(í)+        I   xis)rit,u)dKiu,s)
Ja   Ja

whereKeBVH. Finally let

CO

(0.4) D = DK = l +   I   AJml

where

m = l

(0.5) A^vv-n
Ja   Ja Ja   Ja

risy,ty)--risy,tm)

rism,ty) — rismfm)

dKity,Sy)-dKitm,Sm)

and suppose that DK # 0. Then T maps C onto C in a one-to-one manner and if F

is a measurable function for which either side of the following equation exists,

both sides exist and are equal.

<0.6)

where

E{Fix)} = \D\F{F(Tx)exp[ - 0(x)/2]}

r> b f* b ç>b  /» b r* b /* b

(0.7) <6(x) = 2 x(s)x(t)dK(s,t) +   j x(s)x(t)r(u,v)dK(u,s)dK(v,t).
J a   J a JaJaJaJa

After proving Theorem 2, we will reinterpret it for processes with triangular

covariance functions (Theorem 3) and finally obtain Theorem 1 as a very special

case via the simple substitutions r(s, t) = min (s,t).

1. Some preliminary lemmas. In order to demonstrate the one-to-one and onto

properties of the transformation of Theorem 2, it is necessary to study the

Riemann-Stieltjes integral equation

(1.1) x(t) = y(t) + X
Ja   Ja

is)rit,u)dKiu,s).

A search of the literature failed to uncover previous study of this equation but

it is easily attacked using the classical Fredholm approach. We summarize the

results that we need in

Lemma 1. //

(i)    y is continuous on I = [a, b~[,

(ii)   r is continuous on I x I,

(iii) KeBVH,

(iv) D(A) = DK(A)#0,
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1966] TRANSFORMATIONS OF GAUSSIAN MEASURES 101

then the integral equation (1.1) has one and only one solution given by

b   rb*<'>-*) +50)11y(s)D(t,u;X)dK(u,s).

Here

D(X) = 1 +   I (-X)mAJml ,
m = l

D(t,u;X) = Xr(t,u) + X E ( - X)mBm(t,u)/m\
m = \

where Am is given by (0.5) and

b r b        i>b   t>b

BjM-n'-n
Ja  Ja Ja   Ja

r(t,u)r(t,ty)-r(t,tm)

r(Sy,u)r(Sy,ty) — r(sy,tm)

r(sm,u)r(sm,ty)-r(sm,tm)

dK(ty,Sy)-dK(tm,Sj.

The series for D(X) and D(t,u;X) converge absolutely for all X and the second

converges uniformly in (t,u) on I x I.

We omit the proof of this lemma since it is so similar to that for the classical

Fredholm equation as outlined for example in [12]. We mention only that the

following identities play a role analogous to those in [12, p. 216] and are proved

in the same manner.

r*b   pb

D(t,u;X)= Xr(t,u)D(X) + X \        r(s,u)D(t,v;X)dK(v,s)
Ja   Ja

r>b   /• b

= Xr(t,u)D(X) + X I    I   r(t,v)D(s,u;X)dK(v,s).
Ja  J a

Applying Lemma 1 with X = — 1 and D = D( — 1), we conclude that the trans-

formation T of Theorem 2 is one-to-one and onto C.

Before stating our next two lemmas, we will need to introduce some further-

notation. Roughly speaking, our plan is to approximate the transformation

X0 = (Tx)(0 = x(i)+  í    Í x(s)r(t,u)dK(u,s)
Ja   Ja

by
n n

y(t,) = x(tù+   2Z    I x(tk)r(t¡,tj)
j = i *=i

•    [K(tj,tk) - K(tj,tk-y) - K(tj.y,tk) + K(tj-y,tk-y)-]

where r, = a + i(b — a)/n, i = 0,l,2,---,n.

•
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More briefly we write

D. E. VARBERG [March

(1.2)

where

y i = x,- + I Pikxk,       i - 1,2, — »,

Pik —     2*   rij&jk'
J" = l

rtJ = Htfotf),

Ajk = Kitj, tk) - Kitj,tk.f) - Kitj.y, tk) + Kitj.y,(,_.)

and x¡ and y¡ have their obvious meanings.

Now (1.2) may be thought of as a linear transformation in Euclidean «-space

with determinant D„ given by (see [8, pp. 23-24])

£>„ =

(L3)

1+FU Pl2-Pln

F21 1 + P22-P2„

Pnl n2 " 1+F„

where

Amn=       2

= 1+1   Amn/ml
m = l

PjlJi'"PjlJ~

(1.4)

ji.;™ = i

=     S
¡i .ji = i

F-     »"F. •

i..,Jm = l
^•"Aa

This brings us to our next lemma.

Lemma 2. // r is continuous and KeBVH on Ixl, then limn-,œDn = D

(see (1.3) and (0.4) for the definitions of Dn and D).

Proof. Let J be a bound for | r | and var (K) on I x I. Then by Hadamard's

theorem, Am and Amn (see (0.5) and (1.4)) may be bounded as follows :

\A.\   á mml2J2m,

\Ann\  z% mm,2J2m,      n = l,2,.-..
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Hence if £ > 0 is given,  we may  choose  N so  large  that

103

and

2     |^m|/m!<£/3
m=N + l

2    \A„\/ml< s/3,     n = JV + 1, JV + 2,■
m=JV+l

But lim„-,00/lmB = Am. Thus we may choose M¿:N such that if n> M

2 \Amn-Am\¡m\   <£/3.
m = l

Hence if n > M

\Dm-D\  á 2    Amnlm\\ + \2ZiAmn-Am)¡ml
m=N + l '       ' m = l

+ 2    AJml
m=N + l

< e¡3 + e/3 + e/3 = e.

Lemma 3. Let r be continuous and KeBVH on I xi. Suppose that D^=0

and let N be so large that for n = N, | D„ \ > \ D |/2 (see Lemma 2). Then if

sup
l<iSn

x¡ + 2*Pikxk z%M,

there exists a constant BiM) independent ofn in ^ N) such that

sup    | jc, | á BiM).
lgiSn

Proof. Let y¡ = x¡ + 22=1P¡ítx.¡. Then since D„ # 0 in^N), we may solve

for x¡ by Cramer's rule, the result being

»-»afta. +   i y,sm
Un 7 = 1 (;'*i) ^n

where Dn(j, ¿) is the cofactor of the j/th element of/)„. Now £>„(/, i) may be expanded

in a form very similar to that of Dn (see (1.3) and (1.4)) and is easily shown to be

bounded independently of n.

For i #/, Dnij,i) = Py + 2r=2i CmJm ! where

CmB — 2w
.71.Jm = l

P.. P.P.

P.    .      P.P.    .

P.   .P.p.   .

Hence
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2    yPniUi)
/-t

n-2

v,.||P„.| +   Z    E I^Hc
m = 1    j = 1

/m!

B-2        1 B

j,k = i

è   I    I
j=i fc=i

E
im.*m=l

rikyj riki  '"■ ri*„

4^^;     rhkyrJlkn

rj  *yj        rjmkl'"rjn,k..

I V"AWJ •

Using the fact that | y¡ | ^ M and that | r \ is bounded and K e BY H together with

Hadamard's theorem, it follows that the above expression is bounded independ-

ently of n. The conclusion of the lemma is now a trivial consequence.

2. Proof of Theorem 2. In the interest of greater compactness of notation, we

introduce the matrix form of (1.2). Hence let x and y be the n x 1 matrices

(i.e. vectors) with components x, and y¡ and R and A be the n xn matrices with

elements r>7 and AJk (i,j,k = 1,2, ■•■n). Then the transformation (1.2) may be

written as

(2.1) .V = x + RAx

Also we need functions HM and HMn with domains C and Euclidean n-space

£" respectively. Letting ||| •••||[ denote the sup norm, we define

'l if|||x|||<M-l,

■'  1-a       if |||x||| = M-l + a,       O^fl^l,

. 0 otherwise

and

'1 if|||>|||<M-l.

HMn(u)=-l-a if|||«||| = M-l + a,       0 = a = l,

0 otherwise.

We note that for all xeC,

and

limHM„(x)   =   limHM„[x(ty),---,x(tn)'] = HM(x)
Ï1-.00 H-.GO

lim HM(x) = 1.
M-»oo

In establishing a relation like (0.6), it is usually convenient to begin with some
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restricted class of functions F and then extend to the class of all  measurable

functions. The idea of our proof is first to establish (0.6) for the function

= expFix) = exp     x(i) dpit)

which we shall call the moment generating functional. Once this is done, it is

almost trivial to extend to the class of measurable functions. We break the

proof into two cases.

Case 1. R is nonsingular (at least for sufficiently large n). Making use of the

notation introduced above and letting p denote the vector with components

pit) — p(í¡_y), i = 1,2, • • -, n, we have for any function p of BV,

F exp     xit)dpit)

= lim Fi//M(x)exp     x(r)dp(r)} (monotone convergence)
M-»oo      l Ja )

= lim  lim £{J/M„(x)exp(x'p)} (bounded convergence)
jtf-»oo  n-»oo

= lim lim[(27t)"detÄ]~1/2   f    //Mn(»)exp(»'p - ^v'R'1v)dv.
M-»oo n-»oo JE"

The integral above is just an ordinary n-fold Lebesgue integral. In it we make

the transformation v = u + R\u for which Dn (see (1.3)) is the Jacobian. We get

lim   lim [(27î)"detR]"1/2|J)B|
M-»oo   n-»oo

HM„iu + FA«)exp [(« + R\u)'p - K« + FA«)'R_1(h + RAuf] du
/Je'IE"

which in turn is equal to

(2.2)   | D | lim   lim E{H„¿x + R&x) exp [(x + Râ.x)'p - x'Ax - ix'A'RAx]}.
M-»oo  n-»oo

We would like to pass the limit on n inside the expected value. Now the ex-

pectand is easily shown to be bounded independently of n by Lemma 3 so things

look promising. However, we do not know if limn-,(X>HMnix + RA.x) exists or not.

To get around this difficulty, we apply Fatou's Lemma. Denoting the expectand

by FM„(x), we have

FÍlim inf FMnix)\ = lim £{FM„(x)} = EJKmsupFMJix}}.

In this inequality, let M-* oo. Using monotone convergence, we may pass the

limit on M inside the expected values in the two extreme members. But for M

large enough, J/M„(x + RAx) = 1 and hence
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lim  lim inf FMa(x) = lim lim sup FMn(x)
M—a>      »-»oo M-.O0     n-»°o

= Jim exp[(x + RAx)'p - x'Ax - $x'A'RAx]
n-»oo

= expf j*JTx)ii)dpit)-®ix)ß].

Thus continuing from (2.2), we obtain

(2.3) E {exp £x(í)dp(í)} = |D \E {exp[ £ (Tx)(t)dp(t) - <D(x)/2] j.

To extend to the class of all B measurable functions F, we proceed as follows.

Let T~XB denote the class of all subsets of C which have the form T~1M¿. for

some MeB. Now T_1£ is a Borel field and T_1£ c B. To see the later ¿note

that T~1{xeC:x(t0) <c}eB and use the fact B is generated by sets of the form

{xeC:x(f0)<c}.

Now let M e B and define a set function X* on B by

i*(M) = E{Xj-iM(x)\D\exp[-Q>(x)l2-\}

= £{xM(Tx)|D|exp[-<D(x)/2]},

X„ denoting the set characteristic function of A. X* is a probability measure on B.

Consider the probability space {C,B,X*}. Denoting expected values on it by £*,

we see that for any MeB

E*{Xm(x)} = E{XM(Tx) ID | exp [ - <5(x)/2]}.

This result readily extends to any B measurable function F, i.e.,

(2.4) E*{F(x)} = E{F(Tx) [ D | exp [ — 0(x)/2]}.

But JoX(i) dp(t) is such a function and hence comparing (2.3) and (2.4), we see

that {C,B,X} and {C,B,X*} have the same moment generating functional.

However, this functional uniquely determines the measures of all sets in B and

thus the expected values of all B measurable functions so that £{F(x)} =E*{F(x)}.

Applying (2.4), we have the desired result.

Case 2. R is singular (for some values of n arbitrarily large). Let {C,B,XW}

be the Wiener process with covariance function w(s,t) = min(s, r). On C x C,

let X denote the product measure Xr x Xw and let xm(i) = x(t) + z(t)/m where

xe{C,B,Xr} and ze{C,B,Xw}. Then {xm(r), a = t S b} is a Gaussian process

with covariance function

rm(s, t) = r(s, t) + w(s,t)jm2.

Moreover Rm, the nxn matrix with elements rm(t¡,tj), is nonsingular.   Thus
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adding a subscript m where appropriate, we may proceed much as in Case 1.

We obtain

*H.b

xit)dpit)

=   lim  lim lim  £{//M„(xm)exp(x'mp)}
Af-*oo   n-i-co   m-*oo

= lim   lim   lim   | Dnm | F{i/M„(xm + RmAxm)
M-*co  n-*co  m->oo

• exp[(xm + Rm\xm)'p - x'm&xm - ix„,A'ÄmAxm]}.

It is easy to show that limm-, œ D„m = D„. Also one may prove an analog of Lemma 3

which allows us to pass the limit on m inside the expected value. From here on

the proof proceeds as in Case 1.

3. Applications to triangular covariance functions. We consider the class  of

covariance functions of the form

r 0(s)«KO s = t,
ris,t)=\

l6it)ePis) s = t,

where

(3.1) 0(a) = 0 and </>(i) > 0 on / a [a, 6],

(3.2) 9" and ep" exist and are continuous on /,

(3.3) ePitWit) - 9it)eP'it) > 0 on /.
This class of covariance functions and the corresponding class of Gaussian

processes have already been the objects of considerable study in two papers of the

author [10], [11]. It is known, for example, that such processes have represen-

tations with continuous sample functions. For this class of processes we may

reformulate Theorem 2 in a form just like Theorem 1.

Theorem 3.  Let {C,B,Xr} be a Gaussian process determined by a triangular

covariance function

(9is)ePit)      s = t,
ris,t)=\

(9it)ePis)      s = t,

where conditions (3.1), (3.2) and (3.3) hold. Let

(Tx)(i) =x(r) + Miu,s)dudxis)
Ja   J a

be a transformation defined on C with MeBVH and S¿ #0 (see 0.1). Then T

carries C onto C in a one-to-one manner and if F is a measurable function for

which either side of the following equation exists, both sides exist and are equal.
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(3.4)] E{F(x)} = \2\E{F(Tx)exp[ - vP(x)/2]}

where

(3.5)

and

*P(x) = 2   f  f  N(t,s)d[x(t)lcb(t)]dx(s)
Ja J a

+    f    f   f  N(u,s)N(u,t)d[e(u)/cb(u)-]dx(s)dx(t)
Ja   Ja   Ja

(3.6)   JV(í,s) = Uí)M(í,s) - cb'(t) £ M(u,s)du]/[cb(i)e'(t) - cb'(1)6(1)1

Remark. Theorem 1 is an immediate consequence of this theorem. One

need only note that for r(s, t) = min(s, f), 6(s) = s, cb(s) = 1 and N(t,s) = M(t,s).

Before proving Theorem 3, we state a technical lemma which will allow us to

manipulate various Stieltjes integrals.

Lemma 4. If x is continuous on I, r is continuous on I x I and K e B\H, then

f   f x(s)r(t,u)dK(u,s) = f  x(s)ds\ f r(t,u)duK(u,s)] .
J a J a Ja \_Ja J

Proof. Let e > 0 be given and let S = [a = s0 < Sy < ••• < s„ = b] and

U = [a = u0 <«!<•••< um = b] be partitions of [a, &]. Choose ¿ > 0 so small

that 15"| < ó and | U\ < Ô imply that

A(S) =    i x(s,) f rit, u)du[K(u, s,) - K(u, s,_ 0]
1 = 1 Ja

and

B(S,U)=   | f  J x(s)r(t,u)dK(u,s)

- j x(s)dsU  r(t,u)duK(u,s)\   |  <£/3

- 2 £ x(s,)r(r, u,.)[K(«,.,s,) - £(«,, s,_,) - K(u}.y, s,) + /£(«,_ l5 s,_ J] | < e/3.
i=ij=i

Next let íSq be a fixed partition with | S0 j < á and choose a partition L70 with

| U01 < ¿ and such that

C(S0, l/0) =    i x(s,) f   r(i,u)du[K(u, s,) - X(«, s,_.)]
1 = 1 Jo

n m

- £ x(s,) 2 r(i,«J.)[X(tiJ.,s,)-X(uj,s,_1)-X(«J._1,s,) + X(«J._1,s,_1)]|<£/3.
¡=i        j=i
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Then

I.» b. b /»& r    »6 -|.
|       x(s)r(t,u)dK(u,s) -     x(s)ds r(t,u)daK(u,s)

Ja Ja J a \_ Ja J    •

= B(S0, U0) + C(S0, U0) + A(S0) < s

from which the result follows.

Proof of Theorem 3. Let n(t, s) = Nit, s) on the interior of the rectangle

Ixl and let n(i,s) = 0 on the boundary so that n(a,s)= n(s,a) = n(b,s)

= n(s,b) = 0 for sel. We observe that neBVH sinceNhas this property as is

easily checked from (3.6). Define K by

K(u,s) = J" [l¡eP(v)-]dvn(v,s)

and note that KeBVH and K(u, a) = K(u, b) = 0. Thus

i» 6   í» b

x(s)r(t,u)dK(u,s)
Ja   Ja

=       x(s)ds r(t,u)duK(a,s)    ,     (Lemma 4)

/• b   pb

=   - r(t,u)duK(u,s)dx(s).
Ja   Ja

But

(3.7)

-      r(t,u)duK(u,s)
Ja

=  -       [r(t,u)/ep(u)']dun(u,s)

=   -eP(t)j\d(u)leP(u)-\dun(u,s)-e(t)^ dun(u,s)

= ePit) ̂ \iu,s)d[Qiu)¡ePiu)-\

= <j>it) J'-^ [ j ''Miv,s)dv¡<Piu) ] du

=    I   Miv,s) dv

and so the transformation of Theorem 2 reduces to that of Theorem 3.

Moreover
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J   xis)xit)dKit,s)  =       x(s)ds\  I xit)d,Kit, s) \,    (see Lemma 4)

=    - í   f   xit)d,Kit,s)dxis)
Ja Ja

=  - Ç F [xit)¡ePit)ld,nit,s)dxis)
Ja Ja

=    f fn(í,s)d[x(í)/<KO]áx(s)
Ja    Ja

=    í   f' Nit,s)d[xit)¡ePit)ldxis).
Ja   Ja

Also

[if   f xis)xit)riu,v)dKiu,s)dKiv,t)
Ja   Ja    Ja   Ja

=    í    f x(s)x(í)d í f    ¡ riu,v)duKif,s)dcKiv,t)],
Ja   Ja \_ Ja    J a J

(by an argument similar to that in Lemma 4)

=   f   f       f   f r(u,v)duK(u,s)dvK(v,t)]dx(s)dx(t).
Ja   Ja     L   J a J a J

But

• b rt>

f   f riu,v)dMv,t)duKiu,s)
Ja    Ja

=    -  f  Ï   Miv,t)dvduKiu, s),     (see (3.7))
Ja J a

=   - ja   [jUMiv,t)dv¡cPiu)]duniu,s)

=  JT n(w,s)d„ í j"M(v,t)dv¡eP(u)~\

=  JT n(«,s)n(M,i)d[0(u)/<p(«)]

= j" N(u,s)N(u,t)d[9(u)leP(u)].

The above results imply that (0.7) is the same as (3.5).

It remains to be shown that D = @.It seems intuitively clear that this must be

true since this is correct in the Wiener case. Moreover, it can be shown rigorously
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by manipulating D„ in an appropriate way, taking the limit as n -* co and dis-

covering that it is @. The calculations are so notationally complicated that we

have decided not to include them.
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