Topology of quaternionic manifolds
Author:
Vivian Yoh Kraines
Journal:
Trans. Amer. Math. Soc. 122 (1966), 357-367
MSC:
Primary 53.80; Secondary 57.31
DOI:
https://doi.org/10.1090/S0002-9947-1966-0192513-X
MathSciNet review:
0192513
Full-text PDF Free Access
References | Similar Articles | Additional Information
- Marcel Berger, Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes, Bull. Soc. Math. France 83 (1955), 279–330 (French). MR 79806
- Shiing-shen Chern, On a generalization of Kähler geometry, Algebraic geometry and topology. A symposium in honor of S. Lefschetz, Princeton University Press, Princeton, N. J., 1957, pp. 103–121. MR 0087172
- S. S. Chern, Complex manifolds, Textos de Matemática, No. 5, Instituto de Física e Matemática, Universidade do Recife, 1959. MR 0111055 C. Chevalley, Lie groups, Princeton Univ. Press, Princeton, N. J., 1946.
- Sigurđur Helgason, Differential geometry and symmetric spaces, Pure and Applied Mathematics, Vol. XII, Academic Press, New York-London, 1962. MR 0145455
- W. V. D. Hodge, The theory and applications of harmonic integrals, Cambridge, at the University Press, 1952. 2d ed. MR 0051571
- Wilhelm Klingenberg, Manifolds with restricted conjugate locus, Ann. of Math. (2) 78 (1963), 527–547. MR 159289, DOI https://doi.org/10.2307/1970539
- Wilhelm Klingenberg, Manifolds with restricted conjugate locus. II, Ann. of Math. (2) 80 (1964), 330–339. MR 165467, DOI https://doi.org/10.2307/1970395
- Shoshichi Kobayashi, Topology of positively pinched Kaehler manifolds, Tohoku Math. J. (2) 15 (1963), 121–139. MR 154235, DOI https://doi.org/10.2748/tmj/1178243839
- Shoshichi Kobayashi and Katsumi Nomizu, Foundations of differential geometry. Vol I, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1963. MR 0152974
- Katsumi Nomizu, Invariant affine connections on homogeneous spaces, Amer. J. Math. 76 (1954), 33–65. MR 59050, DOI https://doi.org/10.2307/2372398
- James Simons, On the transitivity of holonomy systems, Ann. of Math. (2) 76 (1962), 213–234. MR 148010, DOI https://doi.org/10.2307/1970273
- André Weil, Introduction à l’étude des variétés kählériennes, Publications de l’Institut de Mathématique de l’Université de Nancago, VI. Actualités Sci. Ind. no. 1267, Hermann, Paris, 1958 (French). MR 0111056 ---, Théorème fondamental de Chern en géométrie riemannienne, Séminaire Bourbaki, 14e année, 1961/1962, No. 239.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 53.80, 57.31
Retrieve articles in all journals with MSC: 53.80, 57.31
Additional Information
Article copyright:
© Copyright 1966
American Mathematical Society