Differentiable actions on homotopy seven spheres
HTML articles powered by AMS MathViewer
- by D. Montgomery and C. T. Yang
- Trans. Amer. Math. Soc. 122 (1966), 480-498
- DOI: https://doi.org/10.1090/S0002-9947-1966-0200934-1
- PDF | Request permission
References
- Wu-chung Hsiang and Wu-yi Hsiang, Some free differentiable actions of $S^{1}$ and $S^{3}$ on $11$-spheres, Quart. J. Math. Oxford Ser. (2) 15 (1964), 371–374. MR 173266, DOI 10.1093/qmath/15.1.371 J. W. Milnor, Differentiable structures, Mimeographed Notes, Princeton University, Princeton, N. J., 1961.
- André Haefliger, Knotted $(4k-1)$-spheres in $6k$-space, Ann. of Math. (2) 75 (1962), 452–466. MR 145539, DOI 10.2307/1970208
- Sze-tsen Hu, Homotopy theory, Pure and Applied Mathematics, Vol. VIII, Academic Press, New York-London, 1959. MR 0106454
- André Haefliger, Plongements différentiables de variétés dans variétés, Comment. Math. Helv. 36 (1961), 47–82 (French). MR 145538, DOI 10.1007/BF02566892 N. E. Steenrod, Fibre bundles, Princeton Univ. Press, Princeton, N. J., 1951. H. Cartan, Seminaire Cartan, Paris, 1950-1951.
- S. Smale, On the structure of manifolds, Amer. J. Math. 84 (1962), 387–399. MR 153022, DOI 10.2307/2372978
- Michel A. Kervaire and John W. Milnor, Groups of homotopy spheres. I, Ann. of Math. (2) 77 (1963), 504–537. MR 148075, DOI 10.1090/S0273-0979-2015-01504-1 J. W. Milnor, Differentiable manifolds which are homotopy spheres, Mimeographed Notes, Princeton University, Princeton, N. J., 1958.
- Hassler Whitney, The self-intersections of a smooth $n$-manifold in $2n$-space, Ann. of Math. (2) 45 (1944), 220–246. MR 10274, DOI 10.2307/1969265
Bibliographic Information
- © Copyright 1966 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 122 (1966), 480-498
- MSC: Primary 57.47
- DOI: https://doi.org/10.1090/S0002-9947-1966-0200934-1
- MathSciNet review: 0200934